Loading…
3D Printing of Strong Lightweight Cellular Structures Using Polysaccharide-Based Composite Foams
Polysaccharides are attractive sustainable resources for the fabrication of advanced materials, but the assembly of these building blocks into complex-shaped structures combining the high strength and low weight required in many applications remains challenging. We have investigated and optimized th...
Saved in:
Published in: | ACS sustainable chemistry & engineering 2018-12, Vol.6 (12), p.17160-17167 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a432t-5a47753a3b35c5a9955684994d582124c81c96235e9fd1d11f750bd0ee94b3673 |
---|---|
cites | cdi_FETCH-LOGICAL-a432t-5a47753a3b35c5a9955684994d582124c81c96235e9fd1d11f750bd0ee94b3673 |
container_end_page | 17167 |
container_issue | 12 |
container_start_page | 17160 |
container_title | ACS sustainable chemistry & engineering |
container_volume | 6 |
creator | Voisin, Hugo P Gordeyeva, Korneliya Siqueira, Gilberto Hausmann, Michael K Studart, André R Bergström, Lennart |
description | Polysaccharides are attractive sustainable resources for the fabrication of advanced materials, but the assembly of these building blocks into complex-shaped structures combining the high strength and low weight required in many applications remains challenging. We have investigated and optimized the rheological and mechanical properties of polysaccharide-based composite foams based on mixtures of methylcellulose (MC), cellulose nanofibrils (CNF), montmorillonite (MMT), and glyoxal and tannic acid. Such foams were found to be stabilized by the coadsorption of MC, CNF, and MMT at the air–water interface, while the complexation of the polysaccharides with tannic acid improved the foam stability. Tannic acid could also be used to tune and optimize the microstructure and the viscoelastic properties of the wet foam for direct ink writing of robust cellular architectures. Glyoxal had no noticeable effect on the properties of the wet foams but significantly enhanced the water resilience and stiffness of the lightweight material obtained after drying at ambient pressure and elevated temperatures with minimum shrinkage. The foams possessed a high porosity and displayed a specific Young’s modulus and yield strength that outperformed other biobased foams and commercially available expanded polystyrene. The strong and water-resilient 3D printed foams can be surface modified using, for example, aminosilanes, which opens up applications for air purification and thermal insulation. |
doi_str_mv | 10.1021/acssuschemeng.8b04549 |
format | article |
fullrecord | <record><control><sourceid>acs_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_su_163581</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c653731645</sourcerecordid><originalsourceid>FETCH-LOGICAL-a432t-5a47753a3b35c5a9955684994d582124c81c96235e9fd1d11f750bd0ee94b3673</originalsourceid><addsrcrecordid>eNqFkd9LwzAQx4MoOOb-BKGvgp1Jk7TJ49zUCQUHOl9jmqY_RtuMpHXsv7elQ9yT93B33H2-93BfAG4RnCMYoAepnOucKnStm3zOEkgo4RdgEqCQ-ZAwevmnvwYz53awD85xwNAEfOGVt7Fl05ZN7pnMe2-t6bu4zIv2oIfsLXVVdZW0w65TbWe187Zu4DemOjqpVCFtmWr_UTqdektT740rW-09G1m7G3CVycrp2alOwfb56WO59uO3l9flIvYlwUHrU0miiGKJE0wVlZxTGjLCOUkpC1BAFEOKhwGmmmcpShHKIgqTFGrNSYLDCE_B_XjXHfS-S8TelrW0R2FkKVbl50IYmwvXCRRiylCP3414Iaszdr2IxTCDBHEYouB7YOnIKmucszr7FSAoBhPEmQniZEKvQ6OuX4ud6WzTP-AfzQ9UDY8v</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>3D Printing of Strong Lightweight Cellular Structures Using Polysaccharide-Based Composite Foams</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Voisin, Hugo P ; Gordeyeva, Korneliya ; Siqueira, Gilberto ; Hausmann, Michael K ; Studart, André R ; Bergström, Lennart</creator><creatorcontrib>Voisin, Hugo P ; Gordeyeva, Korneliya ; Siqueira, Gilberto ; Hausmann, Michael K ; Studart, André R ; Bergström, Lennart</creatorcontrib><description>Polysaccharides are attractive sustainable resources for the fabrication of advanced materials, but the assembly of these building blocks into complex-shaped structures combining the high strength and low weight required in many applications remains challenging. We have investigated and optimized the rheological and mechanical properties of polysaccharide-based composite foams based on mixtures of methylcellulose (MC), cellulose nanofibrils (CNF), montmorillonite (MMT), and glyoxal and tannic acid. Such foams were found to be stabilized by the coadsorption of MC, CNF, and MMT at the air–water interface, while the complexation of the polysaccharides with tannic acid improved the foam stability. Tannic acid could also be used to tune and optimize the microstructure and the viscoelastic properties of the wet foam for direct ink writing of robust cellular architectures. Glyoxal had no noticeable effect on the properties of the wet foams but significantly enhanced the water resilience and stiffness of the lightweight material obtained after drying at ambient pressure and elevated temperatures with minimum shrinkage. The foams possessed a high porosity and displayed a specific Young’s modulus and yield strength that outperformed other biobased foams and commercially available expanded polystyrene. The strong and water-resilient 3D printed foams can be surface modified using, for example, aminosilanes, which opens up applications for air purification and thermal insulation.</description><identifier>ISSN: 2168-0485</identifier><identifier>EISSN: 2168-0485</identifier><identifier>DOI: 10.1021/acssuschemeng.8b04549</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>3D printing ; Air-drying ; Chemical Sciences ; GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY ; Hybrid cellular material ; Low weight ; Material chemistry ; Nanocellulose</subject><ispartof>ACS sustainable chemistry & engineering, 2018-12, Vol.6 (12), p.17160-17167</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a432t-5a47753a3b35c5a9955684994d582124c81c96235e9fd1d11f750bd0ee94b3673</citedby><cites>FETCH-LOGICAL-a432t-5a47753a3b35c5a9955684994d582124c81c96235e9fd1d11f750bd0ee94b3673</cites><orcidid>0000-0002-5100-0284 ; 0000-0002-5702-0681 ; 0000-0001-8187-425X ; 0000-0003-4205-8545</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.inrae.fr/hal-04190612$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-163581$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Voisin, Hugo P</creatorcontrib><creatorcontrib>Gordeyeva, Korneliya</creatorcontrib><creatorcontrib>Siqueira, Gilberto</creatorcontrib><creatorcontrib>Hausmann, Michael K</creatorcontrib><creatorcontrib>Studart, André R</creatorcontrib><creatorcontrib>Bergström, Lennart</creatorcontrib><title>3D Printing of Strong Lightweight Cellular Structures Using Polysaccharide-Based Composite Foams</title><title>ACS sustainable chemistry & engineering</title><addtitle>ACS Sustainable Chem. Eng</addtitle><description>Polysaccharides are attractive sustainable resources for the fabrication of advanced materials, but the assembly of these building blocks into complex-shaped structures combining the high strength and low weight required in many applications remains challenging. We have investigated and optimized the rheological and mechanical properties of polysaccharide-based composite foams based on mixtures of methylcellulose (MC), cellulose nanofibrils (CNF), montmorillonite (MMT), and glyoxal and tannic acid. Such foams were found to be stabilized by the coadsorption of MC, CNF, and MMT at the air–water interface, while the complexation of the polysaccharides with tannic acid improved the foam stability. Tannic acid could also be used to tune and optimize the microstructure and the viscoelastic properties of the wet foam for direct ink writing of robust cellular architectures. Glyoxal had no noticeable effect on the properties of the wet foams but significantly enhanced the water resilience and stiffness of the lightweight material obtained after drying at ambient pressure and elevated temperatures with minimum shrinkage. The foams possessed a high porosity and displayed a specific Young’s modulus and yield strength that outperformed other biobased foams and commercially available expanded polystyrene. The strong and water-resilient 3D printed foams can be surface modified using, for example, aminosilanes, which opens up applications for air purification and thermal insulation.</description><subject>3D printing</subject><subject>Air-drying</subject><subject>Chemical Sciences</subject><subject>GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY</subject><subject>Hybrid cellular material</subject><subject>Low weight</subject><subject>Material chemistry</subject><subject>Nanocellulose</subject><issn>2168-0485</issn><issn>2168-0485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkd9LwzAQx4MoOOb-BKGvgp1Jk7TJ49zUCQUHOl9jmqY_RtuMpHXsv7elQ9yT93B33H2-93BfAG4RnCMYoAepnOucKnStm3zOEkgo4RdgEqCQ-ZAwevmnvwYz53awD85xwNAEfOGVt7Fl05ZN7pnMe2-t6bu4zIv2oIfsLXVVdZW0w65TbWe187Zu4DemOjqpVCFtmWr_UTqdektT740rW-09G1m7G3CVycrp2alOwfb56WO59uO3l9flIvYlwUHrU0miiGKJE0wVlZxTGjLCOUkpC1BAFEOKhwGmmmcpShHKIgqTFGrNSYLDCE_B_XjXHfS-S8TelrW0R2FkKVbl50IYmwvXCRRiylCP3414Iaszdr2IxTCDBHEYouB7YOnIKmucszr7FSAoBhPEmQniZEKvQ6OuX4ud6WzTP-AfzQ9UDY8v</recordid><startdate>20181203</startdate><enddate>20181203</enddate><creator>Voisin, Hugo P</creator><creator>Gordeyeva, Korneliya</creator><creator>Siqueira, Gilberto</creator><creator>Hausmann, Michael K</creator><creator>Studart, André R</creator><creator>Bergström, Lennart</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DG7</scope><orcidid>https://orcid.org/0000-0002-5100-0284</orcidid><orcidid>https://orcid.org/0000-0002-5702-0681</orcidid><orcidid>https://orcid.org/0000-0001-8187-425X</orcidid><orcidid>https://orcid.org/0000-0003-4205-8545</orcidid></search><sort><creationdate>20181203</creationdate><title>3D Printing of Strong Lightweight Cellular Structures Using Polysaccharide-Based Composite Foams</title><author>Voisin, Hugo P ; Gordeyeva, Korneliya ; Siqueira, Gilberto ; Hausmann, Michael K ; Studart, André R ; Bergström, Lennart</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a432t-5a47753a3b35c5a9955684994d582124c81c96235e9fd1d11f750bd0ee94b3673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>3D printing</topic><topic>Air-drying</topic><topic>Chemical Sciences</topic><topic>GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY</topic><topic>Hybrid cellular material</topic><topic>Low weight</topic><topic>Material chemistry</topic><topic>Nanocellulose</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Voisin, Hugo P</creatorcontrib><creatorcontrib>Gordeyeva, Korneliya</creatorcontrib><creatorcontrib>Siqueira, Gilberto</creatorcontrib><creatorcontrib>Hausmann, Michael K</creatorcontrib><creatorcontrib>Studart, André R</creatorcontrib><creatorcontrib>Bergström, Lennart</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Stockholms universitet</collection><jtitle>ACS sustainable chemistry & engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Voisin, Hugo P</au><au>Gordeyeva, Korneliya</au><au>Siqueira, Gilberto</au><au>Hausmann, Michael K</au><au>Studart, André R</au><au>Bergström, Lennart</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D Printing of Strong Lightweight Cellular Structures Using Polysaccharide-Based Composite Foams</atitle><jtitle>ACS sustainable chemistry & engineering</jtitle><addtitle>ACS Sustainable Chem. Eng</addtitle><date>2018-12-03</date><risdate>2018</risdate><volume>6</volume><issue>12</issue><spage>17160</spage><epage>17167</epage><pages>17160-17167</pages><issn>2168-0485</issn><eissn>2168-0485</eissn><abstract>Polysaccharides are attractive sustainable resources for the fabrication of advanced materials, but the assembly of these building blocks into complex-shaped structures combining the high strength and low weight required in many applications remains challenging. We have investigated and optimized the rheological and mechanical properties of polysaccharide-based composite foams based on mixtures of methylcellulose (MC), cellulose nanofibrils (CNF), montmorillonite (MMT), and glyoxal and tannic acid. Such foams were found to be stabilized by the coadsorption of MC, CNF, and MMT at the air–water interface, while the complexation of the polysaccharides with tannic acid improved the foam stability. Tannic acid could also be used to tune and optimize the microstructure and the viscoelastic properties of the wet foam for direct ink writing of robust cellular architectures. Glyoxal had no noticeable effect on the properties of the wet foams but significantly enhanced the water resilience and stiffness of the lightweight material obtained after drying at ambient pressure and elevated temperatures with minimum shrinkage. The foams possessed a high porosity and displayed a specific Young’s modulus and yield strength that outperformed other biobased foams and commercially available expanded polystyrene. The strong and water-resilient 3D printed foams can be surface modified using, for example, aminosilanes, which opens up applications for air purification and thermal insulation.</abstract><pub>American Chemical Society</pub><doi>10.1021/acssuschemeng.8b04549</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-5100-0284</orcidid><orcidid>https://orcid.org/0000-0002-5702-0681</orcidid><orcidid>https://orcid.org/0000-0001-8187-425X</orcidid><orcidid>https://orcid.org/0000-0003-4205-8545</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2168-0485 |
ispartof | ACS sustainable chemistry & engineering, 2018-12, Vol.6 (12), p.17160-17167 |
issn | 2168-0485 2168-0485 |
language | eng |
recordid | cdi_swepub_primary_oai_DiVA_org_su_163581 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | 3D printing Air-drying Chemical Sciences GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY Hybrid cellular material Low weight Material chemistry Nanocellulose |
title | 3D Printing of Strong Lightweight Cellular Structures Using Polysaccharide-Based Composite Foams |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T10%3A14%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20Printing%20of%20Strong%20Lightweight%20Cellular%20Structures%20Using%20Polysaccharide-Based%20Composite%20Foams&rft.jtitle=ACS%20sustainable%20chemistry%20&%20engineering&rft.au=Voisin,%20Hugo%20P&rft.date=2018-12-03&rft.volume=6&rft.issue=12&rft.spage=17160&rft.epage=17167&rft.pages=17160-17167&rft.issn=2168-0485&rft.eissn=2168-0485&rft_id=info:doi/10.1021/acssuschemeng.8b04549&rft_dat=%3Cacs_swepu%3Ec653731645%3C/acs_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a432t-5a47753a3b35c5a9955684994d582124c81c96235e9fd1d11f750bd0ee94b3673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |