Loading…

3D Printing of Strong Lightweight Cellular Structures Using Polysaccharide-Based Composite Foams

Polysaccharides are attractive sustainable resources for the fabrication of advanced materials, but the assembly of these building blocks into complex-shaped structures combining the high strength and low weight required in many applications remains challenging. We have investigated and optimized th...

Full description

Saved in:
Bibliographic Details
Published in:ACS sustainable chemistry & engineering 2018-12, Vol.6 (12), p.17160-17167
Main Authors: Voisin, Hugo P, Gordeyeva, Korneliya, Siqueira, Gilberto, Hausmann, Michael K, Studart, André R, Bergström, Lennart
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a432t-5a47753a3b35c5a9955684994d582124c81c96235e9fd1d11f750bd0ee94b3673
cites cdi_FETCH-LOGICAL-a432t-5a47753a3b35c5a9955684994d582124c81c96235e9fd1d11f750bd0ee94b3673
container_end_page 17167
container_issue 12
container_start_page 17160
container_title ACS sustainable chemistry & engineering
container_volume 6
creator Voisin, Hugo P
Gordeyeva, Korneliya
Siqueira, Gilberto
Hausmann, Michael K
Studart, André R
Bergström, Lennart
description Polysaccharides are attractive sustainable resources for the fabrication of advanced materials, but the assembly of these building blocks into complex-shaped structures combining the high strength and low weight required in many applications remains challenging. We have investigated and optimized the rheological and mechanical properties of polysaccharide-based composite foams based on mixtures of methylcellulose (MC), cellulose nanofibrils (CNF), montmorillonite (MMT), and glyoxal and tannic acid. Such foams were found to be stabilized by the coadsorption of MC, CNF, and MMT at the air–water interface, while the complexation of the polysaccharides with tannic acid improved the foam stability. Tannic acid could also be used to tune and optimize the microstructure and the viscoelastic properties of the wet foam for direct ink writing of robust cellular architectures. Glyoxal had no noticeable effect on the properties of the wet foams but significantly enhanced the water resilience and stiffness of the lightweight material obtained after drying at ambient pressure and elevated temperatures with minimum shrinkage. The foams possessed a high porosity and displayed a specific Young’s modulus and yield strength that outperformed other biobased foams and commercially available expanded polystyrene. The strong and water-resilient 3D printed foams can be surface modified using, for example, aminosilanes, which opens up applications for air purification and thermal insulation.
doi_str_mv 10.1021/acssuschemeng.8b04549
format article
fullrecord <record><control><sourceid>acs_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_su_163581</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c653731645</sourcerecordid><originalsourceid>FETCH-LOGICAL-a432t-5a47753a3b35c5a9955684994d582124c81c96235e9fd1d11f750bd0ee94b3673</originalsourceid><addsrcrecordid>eNqFkd9LwzAQx4MoOOb-BKGvgp1Jk7TJ49zUCQUHOl9jmqY_RtuMpHXsv7elQ9yT93B33H2-93BfAG4RnCMYoAepnOucKnStm3zOEkgo4RdgEqCQ-ZAwevmnvwYz53awD85xwNAEfOGVt7Fl05ZN7pnMe2-t6bu4zIv2oIfsLXVVdZW0w65TbWe187Zu4DemOjqpVCFtmWr_UTqdektT740rW-09G1m7G3CVycrp2alOwfb56WO59uO3l9flIvYlwUHrU0miiGKJE0wVlZxTGjLCOUkpC1BAFEOKhwGmmmcpShHKIgqTFGrNSYLDCE_B_XjXHfS-S8TelrW0R2FkKVbl50IYmwvXCRRiylCP3414Iaszdr2IxTCDBHEYouB7YOnIKmucszr7FSAoBhPEmQniZEKvQ6OuX4ud6WzTP-AfzQ9UDY8v</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>3D Printing of Strong Lightweight Cellular Structures Using Polysaccharide-Based Composite Foams</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Voisin, Hugo P ; Gordeyeva, Korneliya ; Siqueira, Gilberto ; Hausmann, Michael K ; Studart, André R ; Bergström, Lennart</creator><creatorcontrib>Voisin, Hugo P ; Gordeyeva, Korneliya ; Siqueira, Gilberto ; Hausmann, Michael K ; Studart, André R ; Bergström, Lennart</creatorcontrib><description>Polysaccharides are attractive sustainable resources for the fabrication of advanced materials, but the assembly of these building blocks into complex-shaped structures combining the high strength and low weight required in many applications remains challenging. We have investigated and optimized the rheological and mechanical properties of polysaccharide-based composite foams based on mixtures of methylcellulose (MC), cellulose nanofibrils (CNF), montmorillonite (MMT), and glyoxal and tannic acid. Such foams were found to be stabilized by the coadsorption of MC, CNF, and MMT at the air–water interface, while the complexation of the polysaccharides with tannic acid improved the foam stability. Tannic acid could also be used to tune and optimize the microstructure and the viscoelastic properties of the wet foam for direct ink writing of robust cellular architectures. Glyoxal had no noticeable effect on the properties of the wet foams but significantly enhanced the water resilience and stiffness of the lightweight material obtained after drying at ambient pressure and elevated temperatures with minimum shrinkage. The foams possessed a high porosity and displayed a specific Young’s modulus and yield strength that outperformed other biobased foams and commercially available expanded polystyrene. The strong and water-resilient 3D printed foams can be surface modified using, for example, aminosilanes, which opens up applications for air purification and thermal insulation.</description><identifier>ISSN: 2168-0485</identifier><identifier>EISSN: 2168-0485</identifier><identifier>DOI: 10.1021/acssuschemeng.8b04549</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>3D printing ; Air-drying ; Chemical Sciences ; GREEN &amp; SUSTAINABLE SCIENCE &amp; TECHNOLOGY ; Hybrid cellular material ; Low weight ; Material chemistry ; Nanocellulose</subject><ispartof>ACS sustainable chemistry &amp; engineering, 2018-12, Vol.6 (12), p.17160-17167</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a432t-5a47753a3b35c5a9955684994d582124c81c96235e9fd1d11f750bd0ee94b3673</citedby><cites>FETCH-LOGICAL-a432t-5a47753a3b35c5a9955684994d582124c81c96235e9fd1d11f750bd0ee94b3673</cites><orcidid>0000-0002-5100-0284 ; 0000-0002-5702-0681 ; 0000-0001-8187-425X ; 0000-0003-4205-8545</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.inrae.fr/hal-04190612$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-163581$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Voisin, Hugo P</creatorcontrib><creatorcontrib>Gordeyeva, Korneliya</creatorcontrib><creatorcontrib>Siqueira, Gilberto</creatorcontrib><creatorcontrib>Hausmann, Michael K</creatorcontrib><creatorcontrib>Studart, André R</creatorcontrib><creatorcontrib>Bergström, Lennart</creatorcontrib><title>3D Printing of Strong Lightweight Cellular Structures Using Polysaccharide-Based Composite Foams</title><title>ACS sustainable chemistry &amp; engineering</title><addtitle>ACS Sustainable Chem. Eng</addtitle><description>Polysaccharides are attractive sustainable resources for the fabrication of advanced materials, but the assembly of these building blocks into complex-shaped structures combining the high strength and low weight required in many applications remains challenging. We have investigated and optimized the rheological and mechanical properties of polysaccharide-based composite foams based on mixtures of methylcellulose (MC), cellulose nanofibrils (CNF), montmorillonite (MMT), and glyoxal and tannic acid. Such foams were found to be stabilized by the coadsorption of MC, CNF, and MMT at the air–water interface, while the complexation of the polysaccharides with tannic acid improved the foam stability. Tannic acid could also be used to tune and optimize the microstructure and the viscoelastic properties of the wet foam for direct ink writing of robust cellular architectures. Glyoxal had no noticeable effect on the properties of the wet foams but significantly enhanced the water resilience and stiffness of the lightweight material obtained after drying at ambient pressure and elevated temperatures with minimum shrinkage. The foams possessed a high porosity and displayed a specific Young’s modulus and yield strength that outperformed other biobased foams and commercially available expanded polystyrene. The strong and water-resilient 3D printed foams can be surface modified using, for example, aminosilanes, which opens up applications for air purification and thermal insulation.</description><subject>3D printing</subject><subject>Air-drying</subject><subject>Chemical Sciences</subject><subject>GREEN &amp; SUSTAINABLE SCIENCE &amp; TECHNOLOGY</subject><subject>Hybrid cellular material</subject><subject>Low weight</subject><subject>Material chemistry</subject><subject>Nanocellulose</subject><issn>2168-0485</issn><issn>2168-0485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkd9LwzAQx4MoOOb-BKGvgp1Jk7TJ49zUCQUHOl9jmqY_RtuMpHXsv7elQ9yT93B33H2-93BfAG4RnCMYoAepnOucKnStm3zOEkgo4RdgEqCQ-ZAwevmnvwYz53awD85xwNAEfOGVt7Fl05ZN7pnMe2-t6bu4zIv2oIfsLXVVdZW0w65TbWe187Zu4DemOjqpVCFtmWr_UTqdektT740rW-09G1m7G3CVycrp2alOwfb56WO59uO3l9flIvYlwUHrU0miiGKJE0wVlZxTGjLCOUkpC1BAFEOKhwGmmmcpShHKIgqTFGrNSYLDCE_B_XjXHfS-S8TelrW0R2FkKVbl50IYmwvXCRRiylCP3414Iaszdr2IxTCDBHEYouB7YOnIKmucszr7FSAoBhPEmQniZEKvQ6OuX4ud6WzTP-AfzQ9UDY8v</recordid><startdate>20181203</startdate><enddate>20181203</enddate><creator>Voisin, Hugo P</creator><creator>Gordeyeva, Korneliya</creator><creator>Siqueira, Gilberto</creator><creator>Hausmann, Michael K</creator><creator>Studart, André R</creator><creator>Bergström, Lennart</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DG7</scope><orcidid>https://orcid.org/0000-0002-5100-0284</orcidid><orcidid>https://orcid.org/0000-0002-5702-0681</orcidid><orcidid>https://orcid.org/0000-0001-8187-425X</orcidid><orcidid>https://orcid.org/0000-0003-4205-8545</orcidid></search><sort><creationdate>20181203</creationdate><title>3D Printing of Strong Lightweight Cellular Structures Using Polysaccharide-Based Composite Foams</title><author>Voisin, Hugo P ; Gordeyeva, Korneliya ; Siqueira, Gilberto ; Hausmann, Michael K ; Studart, André R ; Bergström, Lennart</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a432t-5a47753a3b35c5a9955684994d582124c81c96235e9fd1d11f750bd0ee94b3673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>3D printing</topic><topic>Air-drying</topic><topic>Chemical Sciences</topic><topic>GREEN &amp; SUSTAINABLE SCIENCE &amp; TECHNOLOGY</topic><topic>Hybrid cellular material</topic><topic>Low weight</topic><topic>Material chemistry</topic><topic>Nanocellulose</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Voisin, Hugo P</creatorcontrib><creatorcontrib>Gordeyeva, Korneliya</creatorcontrib><creatorcontrib>Siqueira, Gilberto</creatorcontrib><creatorcontrib>Hausmann, Michael K</creatorcontrib><creatorcontrib>Studart, André R</creatorcontrib><creatorcontrib>Bergström, Lennart</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Stockholms universitet</collection><jtitle>ACS sustainable chemistry &amp; engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Voisin, Hugo P</au><au>Gordeyeva, Korneliya</au><au>Siqueira, Gilberto</au><au>Hausmann, Michael K</au><au>Studart, André R</au><au>Bergström, Lennart</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D Printing of Strong Lightweight Cellular Structures Using Polysaccharide-Based Composite Foams</atitle><jtitle>ACS sustainable chemistry &amp; engineering</jtitle><addtitle>ACS Sustainable Chem. Eng</addtitle><date>2018-12-03</date><risdate>2018</risdate><volume>6</volume><issue>12</issue><spage>17160</spage><epage>17167</epage><pages>17160-17167</pages><issn>2168-0485</issn><eissn>2168-0485</eissn><abstract>Polysaccharides are attractive sustainable resources for the fabrication of advanced materials, but the assembly of these building blocks into complex-shaped structures combining the high strength and low weight required in many applications remains challenging. We have investigated and optimized the rheological and mechanical properties of polysaccharide-based composite foams based on mixtures of methylcellulose (MC), cellulose nanofibrils (CNF), montmorillonite (MMT), and glyoxal and tannic acid. Such foams were found to be stabilized by the coadsorption of MC, CNF, and MMT at the air–water interface, while the complexation of the polysaccharides with tannic acid improved the foam stability. Tannic acid could also be used to tune and optimize the microstructure and the viscoelastic properties of the wet foam for direct ink writing of robust cellular architectures. Glyoxal had no noticeable effect on the properties of the wet foams but significantly enhanced the water resilience and stiffness of the lightweight material obtained after drying at ambient pressure and elevated temperatures with minimum shrinkage. The foams possessed a high porosity and displayed a specific Young’s modulus and yield strength that outperformed other biobased foams and commercially available expanded polystyrene. The strong and water-resilient 3D printed foams can be surface modified using, for example, aminosilanes, which opens up applications for air purification and thermal insulation.</abstract><pub>American Chemical Society</pub><doi>10.1021/acssuschemeng.8b04549</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-5100-0284</orcidid><orcidid>https://orcid.org/0000-0002-5702-0681</orcidid><orcidid>https://orcid.org/0000-0001-8187-425X</orcidid><orcidid>https://orcid.org/0000-0003-4205-8545</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2168-0485
ispartof ACS sustainable chemistry & engineering, 2018-12, Vol.6 (12), p.17160-17167
issn 2168-0485
2168-0485
language eng
recordid cdi_swepub_primary_oai_DiVA_org_su_163581
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects 3D printing
Air-drying
Chemical Sciences
GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
Hybrid cellular material
Low weight
Material chemistry
Nanocellulose
title 3D Printing of Strong Lightweight Cellular Structures Using Polysaccharide-Based Composite Foams
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T10%3A14%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20Printing%20of%20Strong%20Lightweight%20Cellular%20Structures%20Using%20Polysaccharide-Based%20Composite%20Foams&rft.jtitle=ACS%20sustainable%20chemistry%20&%20engineering&rft.au=Voisin,%20Hugo%20P&rft.date=2018-12-03&rft.volume=6&rft.issue=12&rft.spage=17160&rft.epage=17167&rft.pages=17160-17167&rft.issn=2168-0485&rft.eissn=2168-0485&rft_id=info:doi/10.1021/acssuschemeng.8b04549&rft_dat=%3Cacs_swepu%3Ec653731645%3C/acs_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a432t-5a47753a3b35c5a9955684994d582124c81c96235e9fd1d11f750bd0ee94b3673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true