Loading…
Semirelativistic Schrödinger Equation for Relativistic Laser-Matter Interactions
A semirelativistic formulation of light-matter interaction is derived using the so called propagation gauge and the relativistic mass shift. We show that relativistic effects induced by a superintense laser field can, to a surprisingly large extent, be accounted for by the Schrödinger equation, prov...
Saved in:
Published in: | Physical review letters 2018-12, Vol.121 (25), p.253202-253202, Article 253202 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c429t-bf39bb20d26090391ed4abf9fedd12dd67f7be5c882d8c887c212740ce7ec3c73 |
---|---|
cites | cdi_FETCH-LOGICAL-c429t-bf39bb20d26090391ed4abf9fedd12dd67f7be5c882d8c887c212740ce7ec3c73 |
container_end_page | 253202 |
container_issue | 25 |
container_start_page | 253202 |
container_title | Physical review letters |
container_volume | 121 |
creator | Lindblom, Tor Kjellsson Førre, Morten Lindroth, Eva Selstø, Sølve |
description | A semirelativistic formulation of light-matter interaction is derived using the so called propagation gauge and the relativistic mass shift. We show that relativistic effects induced by a superintense laser field can, to a surprisingly large extent, be accounted for by the Schrödinger equation, provided that we replace the rest mass in the propagation gauge Hamiltonian by the corresponding time-dependent field-dressed mass. The validity of the semirelativistic approach is tested numerically on a hydrogen atom exposed to an intense extreme ultraviolet laser pulse strong enough to accelerate the electron towards relativistic velocities. It is found that while the results obtained from the ordinary (nonrelativistic) Schrödinger equation generally differ from those of the Dirac equation, demonstrating that relativistic effects are significant, the semirelativistic formulation provides results in quantitative agreement with a fully relativistic treatment. |
doi_str_mv | 10.1103/PhysRevLett.121.253202 |
format | article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_su_165806</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2172137873</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-bf39bb20d26090391ed4abf9fedd12dd67f7be5c882d8c887c212740ce7ec3c73</originalsourceid><addsrcrecordid>eNpdkUtOwzAQhi0EgvK4AqrEhgUpM3YaJ0vEs1IRb7aWY0_AqE2KnYC4GBfgYrhqQYjNzGK--TWjj7FdhAEiiMPr549wS29jatsBchzwoeDAV1gPQRaJRExXWQ9AYFIAyA22GcILACDP8nW2ISCDXBbDHru5o6nzNNGte3OhdaZ_Z57916d19RP5_ulrFydN3a8a37_9i411IJ9c6raN2KiOVZs5GbbZWqUngXaWfYs9nJ3eH18k46vz0fHRODEpL9qkrERRlhwsz6AAUSDZVJdVUZG1yK3NZCVLGpo85zaPVRqOXKZgSJIRRootdrDIDe8060o1826q_YdqtFMn7vFINf5JhU5hNswhi_j-Ap_55rWj0KqpC4YmE11T0wXFMUsRuJTz5L1_6EvT-To-EynJUchcikhlC8r4JgRP1e8FCGruSP1xpKIjtXAUF3eX8V05Jfu79iNFfAN985ID</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2172137873</pqid></control><display><type>article</type><title>Semirelativistic Schrödinger Equation for Relativistic Laser-Matter Interactions</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Lindblom, Tor Kjellsson ; Førre, Morten ; Lindroth, Eva ; Selstø, Sølve</creator><creatorcontrib>Lindblom, Tor Kjellsson ; Førre, Morten ; Lindroth, Eva ; Selstø, Sølve</creatorcontrib><description>A semirelativistic formulation of light-matter interaction is derived using the so called propagation gauge and the relativistic mass shift. We show that relativistic effects induced by a superintense laser field can, to a surprisingly large extent, be accounted for by the Schrödinger equation, provided that we replace the rest mass in the propagation gauge Hamiltonian by the corresponding time-dependent field-dressed mass. The validity of the semirelativistic approach is tested numerically on a hydrogen atom exposed to an intense extreme ultraviolet laser pulse strong enough to accelerate the electron towards relativistic velocities. It is found that while the results obtained from the ordinary (nonrelativistic) Schrödinger equation generally differ from those of the Dirac equation, demonstrating that relativistic effects are significant, the semirelativistic formulation provides results in quantitative agreement with a fully relativistic treatment.</description><identifier>ISSN: 0031-9007</identifier><identifier>ISSN: 1079-7114</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.121.253202</identifier><identifier>PMID: 30608795</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Dirac equation ; Lasers ; Propagation ; Relativism ; Relativistic effects ; Relativistic velocity ; Schrodinger equation ; Time dependence ; Ultraviolet lasers</subject><ispartof>Physical review letters, 2018-12, Vol.121 (25), p.253202-253202, Article 253202</ispartof><rights>Copyright American Physical Society Dec 21, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-bf39bb20d26090391ed4abf9fedd12dd67f7be5c882d8c887c212740ce7ec3c73</citedby><cites>FETCH-LOGICAL-c429t-bf39bb20d26090391ed4abf9fedd12dd67f7be5c882d8c887c212740ce7ec3c73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30608795$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-165806$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Lindblom, Tor Kjellsson</creatorcontrib><creatorcontrib>Førre, Morten</creatorcontrib><creatorcontrib>Lindroth, Eva</creatorcontrib><creatorcontrib>Selstø, Sølve</creatorcontrib><title>Semirelativistic Schrödinger Equation for Relativistic Laser-Matter Interactions</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>A semirelativistic formulation of light-matter interaction is derived using the so called propagation gauge and the relativistic mass shift. We show that relativistic effects induced by a superintense laser field can, to a surprisingly large extent, be accounted for by the Schrödinger equation, provided that we replace the rest mass in the propagation gauge Hamiltonian by the corresponding time-dependent field-dressed mass. The validity of the semirelativistic approach is tested numerically on a hydrogen atom exposed to an intense extreme ultraviolet laser pulse strong enough to accelerate the electron towards relativistic velocities. It is found that while the results obtained from the ordinary (nonrelativistic) Schrödinger equation generally differ from those of the Dirac equation, demonstrating that relativistic effects are significant, the semirelativistic formulation provides results in quantitative agreement with a fully relativistic treatment.</description><subject>Dirac equation</subject><subject>Lasers</subject><subject>Propagation</subject><subject>Relativism</subject><subject>Relativistic effects</subject><subject>Relativistic velocity</subject><subject>Schrodinger equation</subject><subject>Time dependence</subject><subject>Ultraviolet lasers</subject><issn>0031-9007</issn><issn>1079-7114</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkUtOwzAQhi0EgvK4AqrEhgUpM3YaJ0vEs1IRb7aWY0_AqE2KnYC4GBfgYrhqQYjNzGK--TWjj7FdhAEiiMPr549wS29jatsBchzwoeDAV1gPQRaJRExXWQ9AYFIAyA22GcILACDP8nW2ISCDXBbDHru5o6nzNNGte3OhdaZ_Z57916d19RP5_ulrFydN3a8a37_9i411IJ9c6raN2KiOVZs5GbbZWqUngXaWfYs9nJ3eH18k46vz0fHRODEpL9qkrERRlhwsz6AAUSDZVJdVUZG1yK3NZCVLGpo85zaPVRqOXKZgSJIRRootdrDIDe8060o1826q_YdqtFMn7vFINf5JhU5hNswhi_j-Ap_55rWj0KqpC4YmE11T0wXFMUsRuJTz5L1_6EvT-To-EynJUchcikhlC8r4JgRP1e8FCGruSP1xpKIjtXAUF3eX8V05Jfu79iNFfAN985ID</recordid><startdate>20181221</startdate><enddate>20181221</enddate><creator>Lindblom, Tor Kjellsson</creator><creator>Førre, Morten</creator><creator>Lindroth, Eva</creator><creator>Selstø, Sølve</creator><general>American Physical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DG7</scope></search><sort><creationdate>20181221</creationdate><title>Semirelativistic Schrödinger Equation for Relativistic Laser-Matter Interactions</title><author>Lindblom, Tor Kjellsson ; Førre, Morten ; Lindroth, Eva ; Selstø, Sølve</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-bf39bb20d26090391ed4abf9fedd12dd67f7be5c882d8c887c212740ce7ec3c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Dirac equation</topic><topic>Lasers</topic><topic>Propagation</topic><topic>Relativism</topic><topic>Relativistic effects</topic><topic>Relativistic velocity</topic><topic>Schrodinger equation</topic><topic>Time dependence</topic><topic>Ultraviolet lasers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lindblom, Tor Kjellsson</creatorcontrib><creatorcontrib>Førre, Morten</creatorcontrib><creatorcontrib>Lindroth, Eva</creatorcontrib><creatorcontrib>Selstø, Sølve</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Stockholms universitet</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lindblom, Tor Kjellsson</au><au>Førre, Morten</au><au>Lindroth, Eva</au><au>Selstø, Sølve</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semirelativistic Schrödinger Equation for Relativistic Laser-Matter Interactions</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2018-12-21</date><risdate>2018</risdate><volume>121</volume><issue>25</issue><spage>253202</spage><epage>253202</epage><pages>253202-253202</pages><artnum>253202</artnum><issn>0031-9007</issn><issn>1079-7114</issn><eissn>1079-7114</eissn><abstract>A semirelativistic formulation of light-matter interaction is derived using the so called propagation gauge and the relativistic mass shift. We show that relativistic effects induced by a superintense laser field can, to a surprisingly large extent, be accounted for by the Schrödinger equation, provided that we replace the rest mass in the propagation gauge Hamiltonian by the corresponding time-dependent field-dressed mass. The validity of the semirelativistic approach is tested numerically on a hydrogen atom exposed to an intense extreme ultraviolet laser pulse strong enough to accelerate the electron towards relativistic velocities. It is found that while the results obtained from the ordinary (nonrelativistic) Schrödinger equation generally differ from those of the Dirac equation, demonstrating that relativistic effects are significant, the semirelativistic formulation provides results in quantitative agreement with a fully relativistic treatment.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>30608795</pmid><doi>10.1103/PhysRevLett.121.253202</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2018-12, Vol.121 (25), p.253202-253202, Article 253202 |
issn | 0031-9007 1079-7114 1079-7114 |
language | eng |
recordid | cdi_swepub_primary_oai_DiVA_org_su_165806 |
source | American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list) |
subjects | Dirac equation Lasers Propagation Relativism Relativistic effects Relativistic velocity Schrodinger equation Time dependence Ultraviolet lasers |
title | Semirelativistic Schrödinger Equation for Relativistic Laser-Matter Interactions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A57%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semirelativistic%20Schr%C3%B6dinger%20Equation%20for%20Relativistic%20Laser-Matter%20Interactions&rft.jtitle=Physical%20review%20letters&rft.au=Lindblom,%20Tor%20Kjellsson&rft.date=2018-12-21&rft.volume=121&rft.issue=25&rft.spage=253202&rft.epage=253202&rft.pages=253202-253202&rft.artnum=253202&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.121.253202&rft_dat=%3Cproquest_swepu%3E2172137873%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c429t-bf39bb20d26090391ed4abf9fedd12dd67f7be5c882d8c887c212740ce7ec3c73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2172137873&rft_id=info:pmid/30608795&rfr_iscdi=true |