Loading…

Semirelativistic Schrödinger Equation for Relativistic Laser-Matter Interactions

A semirelativistic formulation of light-matter interaction is derived using the so called propagation gauge and the relativistic mass shift. We show that relativistic effects induced by a superintense laser field can, to a surprisingly large extent, be accounted for by the Schrödinger equation, prov...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters 2018-12, Vol.121 (25), p.253202-253202, Article 253202
Main Authors: Lindblom, Tor Kjellsson, Førre, Morten, Lindroth, Eva, Selstø, Sølve
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c429t-bf39bb20d26090391ed4abf9fedd12dd67f7be5c882d8c887c212740ce7ec3c73
cites cdi_FETCH-LOGICAL-c429t-bf39bb20d26090391ed4abf9fedd12dd67f7be5c882d8c887c212740ce7ec3c73
container_end_page 253202
container_issue 25
container_start_page 253202
container_title Physical review letters
container_volume 121
creator Lindblom, Tor Kjellsson
Førre, Morten
Lindroth, Eva
Selstø, Sølve
description A semirelativistic formulation of light-matter interaction is derived using the so called propagation gauge and the relativistic mass shift. We show that relativistic effects induced by a superintense laser field can, to a surprisingly large extent, be accounted for by the Schrödinger equation, provided that we replace the rest mass in the propagation gauge Hamiltonian by the corresponding time-dependent field-dressed mass. The validity of the semirelativistic approach is tested numerically on a hydrogen atom exposed to an intense extreme ultraviolet laser pulse strong enough to accelerate the electron towards relativistic velocities. It is found that while the results obtained from the ordinary (nonrelativistic) Schrödinger equation generally differ from those of the Dirac equation, demonstrating that relativistic effects are significant, the semirelativistic formulation provides results in quantitative agreement with a fully relativistic treatment.
doi_str_mv 10.1103/PhysRevLett.121.253202
format article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_su_165806</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2172137873</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-bf39bb20d26090391ed4abf9fedd12dd67f7be5c882d8c887c212740ce7ec3c73</originalsourceid><addsrcrecordid>eNpdkUtOwzAQhi0EgvK4AqrEhgUpM3YaJ0vEs1IRb7aWY0_AqE2KnYC4GBfgYrhqQYjNzGK--TWjj7FdhAEiiMPr549wS29jatsBchzwoeDAV1gPQRaJRExXWQ9AYFIAyA22GcILACDP8nW2ISCDXBbDHru5o6nzNNGte3OhdaZ_Z57916d19RP5_ulrFydN3a8a37_9i411IJ9c6raN2KiOVZs5GbbZWqUngXaWfYs9nJ3eH18k46vz0fHRODEpL9qkrERRlhwsz6AAUSDZVJdVUZG1yK3NZCVLGpo85zaPVRqOXKZgSJIRRootdrDIDe8060o1826q_YdqtFMn7vFINf5JhU5hNswhi_j-Ap_55rWj0KqpC4YmE11T0wXFMUsRuJTz5L1_6EvT-To-EynJUchcikhlC8r4JgRP1e8FCGruSP1xpKIjtXAUF3eX8V05Jfu79iNFfAN985ID</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2172137873</pqid></control><display><type>article</type><title>Semirelativistic Schrödinger Equation for Relativistic Laser-Matter Interactions</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Lindblom, Tor Kjellsson ; Førre, Morten ; Lindroth, Eva ; Selstø, Sølve</creator><creatorcontrib>Lindblom, Tor Kjellsson ; Førre, Morten ; Lindroth, Eva ; Selstø, Sølve</creatorcontrib><description>A semirelativistic formulation of light-matter interaction is derived using the so called propagation gauge and the relativistic mass shift. We show that relativistic effects induced by a superintense laser field can, to a surprisingly large extent, be accounted for by the Schrödinger equation, provided that we replace the rest mass in the propagation gauge Hamiltonian by the corresponding time-dependent field-dressed mass. The validity of the semirelativistic approach is tested numerically on a hydrogen atom exposed to an intense extreme ultraviolet laser pulse strong enough to accelerate the electron towards relativistic velocities. It is found that while the results obtained from the ordinary (nonrelativistic) Schrödinger equation generally differ from those of the Dirac equation, demonstrating that relativistic effects are significant, the semirelativistic formulation provides results in quantitative agreement with a fully relativistic treatment.</description><identifier>ISSN: 0031-9007</identifier><identifier>ISSN: 1079-7114</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.121.253202</identifier><identifier>PMID: 30608795</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Dirac equation ; Lasers ; Propagation ; Relativism ; Relativistic effects ; Relativistic velocity ; Schrodinger equation ; Time dependence ; Ultraviolet lasers</subject><ispartof>Physical review letters, 2018-12, Vol.121 (25), p.253202-253202, Article 253202</ispartof><rights>Copyright American Physical Society Dec 21, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-bf39bb20d26090391ed4abf9fedd12dd67f7be5c882d8c887c212740ce7ec3c73</citedby><cites>FETCH-LOGICAL-c429t-bf39bb20d26090391ed4abf9fedd12dd67f7be5c882d8c887c212740ce7ec3c73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30608795$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-165806$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Lindblom, Tor Kjellsson</creatorcontrib><creatorcontrib>Førre, Morten</creatorcontrib><creatorcontrib>Lindroth, Eva</creatorcontrib><creatorcontrib>Selstø, Sølve</creatorcontrib><title>Semirelativistic Schrödinger Equation for Relativistic Laser-Matter Interactions</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>A semirelativistic formulation of light-matter interaction is derived using the so called propagation gauge and the relativistic mass shift. We show that relativistic effects induced by a superintense laser field can, to a surprisingly large extent, be accounted for by the Schrödinger equation, provided that we replace the rest mass in the propagation gauge Hamiltonian by the corresponding time-dependent field-dressed mass. The validity of the semirelativistic approach is tested numerically on a hydrogen atom exposed to an intense extreme ultraviolet laser pulse strong enough to accelerate the electron towards relativistic velocities. It is found that while the results obtained from the ordinary (nonrelativistic) Schrödinger equation generally differ from those of the Dirac equation, demonstrating that relativistic effects are significant, the semirelativistic formulation provides results in quantitative agreement with a fully relativistic treatment.</description><subject>Dirac equation</subject><subject>Lasers</subject><subject>Propagation</subject><subject>Relativism</subject><subject>Relativistic effects</subject><subject>Relativistic velocity</subject><subject>Schrodinger equation</subject><subject>Time dependence</subject><subject>Ultraviolet lasers</subject><issn>0031-9007</issn><issn>1079-7114</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkUtOwzAQhi0EgvK4AqrEhgUpM3YaJ0vEs1IRb7aWY0_AqE2KnYC4GBfgYrhqQYjNzGK--TWjj7FdhAEiiMPr549wS29jatsBchzwoeDAV1gPQRaJRExXWQ9AYFIAyA22GcILACDP8nW2ISCDXBbDHru5o6nzNNGte3OhdaZ_Z57916d19RP5_ulrFydN3a8a37_9i411IJ9c6raN2KiOVZs5GbbZWqUngXaWfYs9nJ3eH18k46vz0fHRODEpL9qkrERRlhwsz6AAUSDZVJdVUZG1yK3NZCVLGpo85zaPVRqOXKZgSJIRRootdrDIDe8060o1826q_YdqtFMn7vFINf5JhU5hNswhi_j-Ap_55rWj0KqpC4YmE11T0wXFMUsRuJTz5L1_6EvT-To-EynJUchcikhlC8r4JgRP1e8FCGruSP1xpKIjtXAUF3eX8V05Jfu79iNFfAN985ID</recordid><startdate>20181221</startdate><enddate>20181221</enddate><creator>Lindblom, Tor Kjellsson</creator><creator>Førre, Morten</creator><creator>Lindroth, Eva</creator><creator>Selstø, Sølve</creator><general>American Physical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DG7</scope></search><sort><creationdate>20181221</creationdate><title>Semirelativistic Schrödinger Equation for Relativistic Laser-Matter Interactions</title><author>Lindblom, Tor Kjellsson ; Førre, Morten ; Lindroth, Eva ; Selstø, Sølve</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-bf39bb20d26090391ed4abf9fedd12dd67f7be5c882d8c887c212740ce7ec3c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Dirac equation</topic><topic>Lasers</topic><topic>Propagation</topic><topic>Relativism</topic><topic>Relativistic effects</topic><topic>Relativistic velocity</topic><topic>Schrodinger equation</topic><topic>Time dependence</topic><topic>Ultraviolet lasers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lindblom, Tor Kjellsson</creatorcontrib><creatorcontrib>Førre, Morten</creatorcontrib><creatorcontrib>Lindroth, Eva</creatorcontrib><creatorcontrib>Selstø, Sølve</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Stockholms universitet</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lindblom, Tor Kjellsson</au><au>Førre, Morten</au><au>Lindroth, Eva</au><au>Selstø, Sølve</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semirelativistic Schrödinger Equation for Relativistic Laser-Matter Interactions</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2018-12-21</date><risdate>2018</risdate><volume>121</volume><issue>25</issue><spage>253202</spage><epage>253202</epage><pages>253202-253202</pages><artnum>253202</artnum><issn>0031-9007</issn><issn>1079-7114</issn><eissn>1079-7114</eissn><abstract>A semirelativistic formulation of light-matter interaction is derived using the so called propagation gauge and the relativistic mass shift. We show that relativistic effects induced by a superintense laser field can, to a surprisingly large extent, be accounted for by the Schrödinger equation, provided that we replace the rest mass in the propagation gauge Hamiltonian by the corresponding time-dependent field-dressed mass. The validity of the semirelativistic approach is tested numerically on a hydrogen atom exposed to an intense extreme ultraviolet laser pulse strong enough to accelerate the electron towards relativistic velocities. It is found that while the results obtained from the ordinary (nonrelativistic) Schrödinger equation generally differ from those of the Dirac equation, demonstrating that relativistic effects are significant, the semirelativistic formulation provides results in quantitative agreement with a fully relativistic treatment.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>30608795</pmid><doi>10.1103/PhysRevLett.121.253202</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2018-12, Vol.121 (25), p.253202-253202, Article 253202
issn 0031-9007
1079-7114
1079-7114
language eng
recordid cdi_swepub_primary_oai_DiVA_org_su_165806
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
subjects Dirac equation
Lasers
Propagation
Relativism
Relativistic effects
Relativistic velocity
Schrodinger equation
Time dependence
Ultraviolet lasers
title Semirelativistic Schrödinger Equation for Relativistic Laser-Matter Interactions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A57%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semirelativistic%20Schr%C3%B6dinger%20Equation%20for%20Relativistic%20Laser-Matter%20Interactions&rft.jtitle=Physical%20review%20letters&rft.au=Lindblom,%20Tor%20Kjellsson&rft.date=2018-12-21&rft.volume=121&rft.issue=25&rft.spage=253202&rft.epage=253202&rft.pages=253202-253202&rft.artnum=253202&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.121.253202&rft_dat=%3Cproquest_swepu%3E2172137873%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c429t-bf39bb20d26090391ed4abf9fedd12dd67f7be5c882d8c887c212740ce7ec3c73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2172137873&rft_id=info:pmid/30608795&rfr_iscdi=true