Loading…
Constraining the Milky Way halo potential with the GD-1 stellar stream
Abstract We use ESA/Gaia astrometry together with SEGUE and LAMOST measurements of the GD-1 stellar stream to explore the improvement on the Galactic gravitational potential that these new data provide. Assuming a realistic universal model for the dark matter halo together with reasonable models of...
Saved in:
Published in: | Monthly notices of the Royal Astronomical Society 2019-07, Vol.486 (3), p.2995-3005 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract
We use ESA/Gaia astrometry together with SEGUE and LAMOST measurements of the GD-1 stellar stream to explore the improvement on the Galactic gravitational potential that these new data provide. Assuming a realistic universal model for the dark matter halo together with reasonable models of the baryonic components, we find that the orbital solutions for GD-1 require the circular velocity at the Solar radius to be $V_{\rm circ}({\rm R}_\odot) =244\pm 4{\rm \, km\, s^{-1}}$, and also that the density flattening of the dark halo is $q_{\rho }=0.82^{+0.25}_{-0.13}$. The corresponding Galactic mass within $20{\rm \, kpc}$ was estimated to be $M_{\rm MW}(\lt 20{\rm \, kpc})=2.5\pm 0.2 \times 10^{11} {\rm \, M_\odot }$. Moreover, Gaia’s excellent proper motions also allowed us to constrain the velocity dispersion of the GD-1 stream in the direction tangential to the line of sight to be $\lt 2.30{\rm \, km\, s^{-1}}$ (95 per cent confidence limit), confirming the extremely cold dynamical nature of this system. |
---|---|
ISSN: | 0035-8711 1365-2966 1365-2966 |
DOI: | 10.1093/mnras/stz1035 |