Loading…

Exciton routing in the heterostructure of a transition metal dichalcogenide monolayer on a paraelectric substrate

We propose a scheme for the spatial exciton energy control and exciton routing in a transition-metal dichalcogenide (TMD) monolayer which lies on a quantum paraelectric substrate. It relies on the ultrasensitive response of the substrate dielectric permittivity to temperature changes, allowing for s...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. B 2019-10, Vol.100 (16), Article 165303
Main Authors: Shahnazaryan, V., Kyriienko, O., Rostami, H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We propose a scheme for the spatial exciton energy control and exciton routing in a transition-metal dichalcogenide (TMD) monolayer which lies on a quantum paraelectric substrate. It relies on the ultrasensitive response of the substrate dielectric permittivity to temperature changes, allowing for spatially inhomogeneous screening of Coulomb interaction in a monolayer. As an example, we consider the heterostructure of TMD and strontium titanate oxide SrTiO3, where large dielectric screening can be attained. We study the impact of substrate temperature on the characteristic electronic features of TMD monolayers such as the particle band gap and exciton binding energy, Bohr radius, and nonlinearity (an exciton-exciton interaction). The combination of particle band gap and exciton binding energy modulation results in the shift of the exciton resonance energy. Applying local heating, we create spatial patterns with varying exciton resonant energy and an exciton flow toward the energetically lower region of the sample.
ISSN:2469-9950
2469-9969
2469-9969
DOI:10.1103/PhysRevB.100.165303