Loading…

Recombining Your Way Out of Trouble: The Genetic Architecture of Hybrid Fitness under Environmental Stress

Abstract Hybridization between species can either promote or impede adaptation. But we know very little about the genetic basis of hybrid fitness, especially in nondomesticated organisms, and when populations are facing environmental stress. We made genetically variable F2 hybrid populations from tw...

Full description

Saved in:
Bibliographic Details
Published in:Molecular biology and evolution 2020-01, Vol.37 (1), p.167-182
Main Authors: Zhang, Zebin, Bendixsen, Devin P, Janzen, Thijs, Nolte, Arne W, Greig, Duncan, Stelkens, Rike
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c457t-251cd351f9a12f8c1c3a0b88e775a89292d3b75c7f47e8221b5449d45f970f943
cites cdi_FETCH-LOGICAL-c457t-251cd351f9a12f8c1c3a0b88e775a89292d3b75c7f47e8221b5449d45f970f943
container_end_page 182
container_issue 1
container_start_page 167
container_title Molecular biology and evolution
container_volume 37
creator Zhang, Zebin
Bendixsen, Devin P
Janzen, Thijs
Nolte, Arne W
Greig, Duncan
Stelkens, Rike
description Abstract Hybridization between species can either promote or impede adaptation. But we know very little about the genetic basis of hybrid fitness, especially in nondomesticated organisms, and when populations are facing environmental stress. We made genetically variable F2 hybrid populations from two divergent Saccharomyces yeast species. We exposed populations to ten toxins and sequenced the most resilient hybrids on low coverage using ddRADseq to investigate four aspects of their genomes: 1) hybridity, 2) interspecific heterozygosity, 3) epistasis (positive or negative associations between nonhomologous chromosomes), and 4) ploidy. We used linear mixed-effect models and simulations to measure to which extent hybrid genome composition was contingent on the environment. Genomes grown in different environments varied in every aspect of hybridness measured, revealing strong genotype–environment interactions. We also found selection against heterozygosity or directional selection for one of the parental alleles, with larger fitness of genomes carrying more homozygous allelic combinations in an otherwise hybrid genomic background. In addition, individual chromosomes and chromosomal interactions showed significant species biases and pervasive aneuploidies. Against our expectations, we observed multiple beneficial, opposite-species chromosome associations, confirmed by epistasis- and selection-free computer simulations, which is surprising given the large divergence of parental genomes (∼15%). Together, these results suggest that successful, stress-resilient hybrid genomes can be assembled from the best features of both parents without paying high costs of negative epistasis. This illustrates the importance of measuring genetic trait architecture in an environmental context when determining the evolutionary potential of genetically diverse hybrid populations.
doi_str_mv 10.1093/molbev/msz211
format article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_su_178775</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/molbev/msz211</oup_id><sourcerecordid>2290837476</sourcerecordid><originalsourceid>FETCH-LOGICAL-c457t-251cd351f9a12f8c1c3a0b88e775a89292d3b75c7f47e8221b5449d45f970f943</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EokvhyBX5yIFQf2Vtc0BalX4gVaoEC4iT5TiTXVeJvdjxouXXkyql0BOnGWmeeWakF6GXlLylRPOTIfYN7E-G_ItR-ggtaM1lRSXVj9GCyKkXhKsj9CznG0KoEMvlU3TEaU2VYHKBbj6Bi0Pjgw8b_D2WhL_ZA74uI44dXqdYmh7e4fUW8AUEGL3Dq-S2fgQ3lgS30OWhSb7F534MkDMuoYWEz8LepxgGCKPt8ecxTaPn6Eln-wwv7uox-nJ-tj69rK6uLz6erq4qJ2o5VqymruU17bSlrFOOOm5JoxRIWVulmWYtb2TtZCckKMZoUwuhW1F3WpJOC36M3sze_BN2pTG75AebDiZabz74rysT08bkYqhUk3LC38_4xA7QuunlZPsHWw8nwW_NJu7NUivBl3ISvL4TpPijQB7N4LODvrcBYsmGMU0Ul0IuJ7SaUZdizgm6-zOUmNs4zRynmeOc-Ff__nZP_8nv7-1Ydv9x_QarTq1k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2290837476</pqid></control><display><type>article</type><title>Recombining Your Way Out of Trouble: The Genetic Architecture of Hybrid Fitness under Environmental Stress</title><source>Oxford Open</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Zhang, Zebin ; Bendixsen, Devin P ; Janzen, Thijs ; Nolte, Arne W ; Greig, Duncan ; Stelkens, Rike</creator><contributor>Takahashi, Aya</contributor><creatorcontrib>Zhang, Zebin ; Bendixsen, Devin P ; Janzen, Thijs ; Nolte, Arne W ; Greig, Duncan ; Stelkens, Rike ; Takahashi, Aya</creatorcontrib><description>Abstract Hybridization between species can either promote or impede adaptation. But we know very little about the genetic basis of hybrid fitness, especially in nondomesticated organisms, and when populations are facing environmental stress. We made genetically variable F2 hybrid populations from two divergent Saccharomyces yeast species. We exposed populations to ten toxins and sequenced the most resilient hybrids on low coverage using ddRADseq to investigate four aspects of their genomes: 1) hybridity, 2) interspecific heterozygosity, 3) epistasis (positive or negative associations between nonhomologous chromosomes), and 4) ploidy. We used linear mixed-effect models and simulations to measure to which extent hybrid genome composition was contingent on the environment. Genomes grown in different environments varied in every aspect of hybridness measured, revealing strong genotype–environment interactions. We also found selection against heterozygosity or directional selection for one of the parental alleles, with larger fitness of genomes carrying more homozygous allelic combinations in an otherwise hybrid genomic background. In addition, individual chromosomes and chromosomal interactions showed significant species biases and pervasive aneuploidies. Against our expectations, we observed multiple beneficial, opposite-species chromosome associations, confirmed by epistasis- and selection-free computer simulations, which is surprising given the large divergence of parental genomes (∼15%). Together, these results suggest that successful, stress-resilient hybrid genomes can be assembled from the best features of both parents without paying high costs of negative epistasis. This illustrates the importance of measuring genetic trait architecture in an environmental context when determining the evolutionary potential of genetically diverse hybrid populations.</description><identifier>ISSN: 0737-4038</identifier><identifier>ISSN: 1537-1719</identifier><identifier>EISSN: 1537-1719</identifier><identifier>DOI: 10.1093/molbev/msz211</identifier><identifier>PMID: 31518427</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>Chromosomes, Fungal ; ddRADseq ; Discoveries ; environmental stress ; epistasis ; evolutionär genetik ; Gene-Environment Interaction ; Genetic Fitness ; genome evolution ; heterozygosity ; hybridization ; Hybridization, Genetic ; Saccharomyces ; Saccharomyces - genetics ; Stress, Physiological</subject><ispartof>Molecular biology and evolution, 2020-01, Vol.37 (1), p.167-182</ispartof><rights>The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. 2019</rights><rights>The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c457t-251cd351f9a12f8c1c3a0b88e775a89292d3b75c7f47e8221b5449d45f970f943</citedby><cites>FETCH-LOGICAL-c457t-251cd351f9a12f8c1c3a0b88e775a89292d3b75c7f47e8221b5449d45f970f943</cites><orcidid>0000-0003-0831-7646 ; 0000-0002-8530-0656</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6984367/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6984367/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,1599,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31518427$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-178775$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><contributor>Takahashi, Aya</contributor><creatorcontrib>Zhang, Zebin</creatorcontrib><creatorcontrib>Bendixsen, Devin P</creatorcontrib><creatorcontrib>Janzen, Thijs</creatorcontrib><creatorcontrib>Nolte, Arne W</creatorcontrib><creatorcontrib>Greig, Duncan</creatorcontrib><creatorcontrib>Stelkens, Rike</creatorcontrib><title>Recombining Your Way Out of Trouble: The Genetic Architecture of Hybrid Fitness under Environmental Stress</title><title>Molecular biology and evolution</title><addtitle>Mol Biol Evol</addtitle><description>Abstract Hybridization between species can either promote or impede adaptation. But we know very little about the genetic basis of hybrid fitness, especially in nondomesticated organisms, and when populations are facing environmental stress. We made genetically variable F2 hybrid populations from two divergent Saccharomyces yeast species. We exposed populations to ten toxins and sequenced the most resilient hybrids on low coverage using ddRADseq to investigate four aspects of their genomes: 1) hybridity, 2) interspecific heterozygosity, 3) epistasis (positive or negative associations between nonhomologous chromosomes), and 4) ploidy. We used linear mixed-effect models and simulations to measure to which extent hybrid genome composition was contingent on the environment. Genomes grown in different environments varied in every aspect of hybridness measured, revealing strong genotype–environment interactions. We also found selection against heterozygosity or directional selection for one of the parental alleles, with larger fitness of genomes carrying more homozygous allelic combinations in an otherwise hybrid genomic background. In addition, individual chromosomes and chromosomal interactions showed significant species biases and pervasive aneuploidies. Against our expectations, we observed multiple beneficial, opposite-species chromosome associations, confirmed by epistasis- and selection-free computer simulations, which is surprising given the large divergence of parental genomes (∼15%). Together, these results suggest that successful, stress-resilient hybrid genomes can be assembled from the best features of both parents without paying high costs of negative epistasis. This illustrates the importance of measuring genetic trait architecture in an environmental context when determining the evolutionary potential of genetically diverse hybrid populations.</description><subject>Chromosomes, Fungal</subject><subject>ddRADseq</subject><subject>Discoveries</subject><subject>environmental stress</subject><subject>epistasis</subject><subject>evolutionär genetik</subject><subject>Gene-Environment Interaction</subject><subject>Genetic Fitness</subject><subject>genome evolution</subject><subject>heterozygosity</subject><subject>hybridization</subject><subject>Hybridization, Genetic</subject><subject>Saccharomyces</subject><subject>Saccharomyces - genetics</subject><subject>Stress, Physiological</subject><issn>0737-4038</issn><issn>1537-1719</issn><issn>1537-1719</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqFkU1v1DAQhi0EokvhyBX5yIFQf2Vtc0BalX4gVaoEC4iT5TiTXVeJvdjxouXXkyql0BOnGWmeeWakF6GXlLylRPOTIfYN7E-G_ItR-ggtaM1lRSXVj9GCyKkXhKsj9CznG0KoEMvlU3TEaU2VYHKBbj6Bi0Pjgw8b_D2WhL_ZA74uI44dXqdYmh7e4fUW8AUEGL3Dq-S2fgQ3lgS30OWhSb7F534MkDMuoYWEz8LepxgGCKPt8ecxTaPn6Eln-wwv7uox-nJ-tj69rK6uLz6erq4qJ2o5VqymruU17bSlrFOOOm5JoxRIWVulmWYtb2TtZCckKMZoUwuhW1F3WpJOC36M3sze_BN2pTG75AebDiZabz74rysT08bkYqhUk3LC38_4xA7QuunlZPsHWw8nwW_NJu7NUivBl3ISvL4TpPijQB7N4LODvrcBYsmGMU0Ul0IuJ7SaUZdizgm6-zOUmNs4zRynmeOc-Ff__nZP_8nv7-1Ydv9x_QarTq1k</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Zhang, Zebin</creator><creator>Bendixsen, Devin P</creator><creator>Janzen, Thijs</creator><creator>Nolte, Arne W</creator><creator>Greig, Duncan</creator><creator>Stelkens, Rike</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>ABAVF</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DG7</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0003-0831-7646</orcidid><orcidid>https://orcid.org/0000-0002-8530-0656</orcidid></search><sort><creationdate>20200101</creationdate><title>Recombining Your Way Out of Trouble: The Genetic Architecture of Hybrid Fitness under Environmental Stress</title><author>Zhang, Zebin ; Bendixsen, Devin P ; Janzen, Thijs ; Nolte, Arne W ; Greig, Duncan ; Stelkens, Rike</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c457t-251cd351f9a12f8c1c3a0b88e775a89292d3b75c7f47e8221b5449d45f970f943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chromosomes, Fungal</topic><topic>ddRADseq</topic><topic>Discoveries</topic><topic>environmental stress</topic><topic>epistasis</topic><topic>evolutionär genetik</topic><topic>Gene-Environment Interaction</topic><topic>Genetic Fitness</topic><topic>genome evolution</topic><topic>heterozygosity</topic><topic>hybridization</topic><topic>Hybridization, Genetic</topic><topic>Saccharomyces</topic><topic>Saccharomyces - genetics</topic><topic>Stress, Physiological</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Zebin</creatorcontrib><creatorcontrib>Bendixsen, Devin P</creatorcontrib><creatorcontrib>Janzen, Thijs</creatorcontrib><creatorcontrib>Nolte, Arne W</creatorcontrib><creatorcontrib>Greig, Duncan</creatorcontrib><creatorcontrib>Stelkens, Rike</creatorcontrib><collection>Oxford Open</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SWEPUB Stockholms universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Stockholms universitet</collection><collection>SwePub Articles full text</collection><jtitle>Molecular biology and evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Zebin</au><au>Bendixsen, Devin P</au><au>Janzen, Thijs</au><au>Nolte, Arne W</au><au>Greig, Duncan</au><au>Stelkens, Rike</au><au>Takahashi, Aya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Recombining Your Way Out of Trouble: The Genetic Architecture of Hybrid Fitness under Environmental Stress</atitle><jtitle>Molecular biology and evolution</jtitle><addtitle>Mol Biol Evol</addtitle><date>2020-01-01</date><risdate>2020</risdate><volume>37</volume><issue>1</issue><spage>167</spage><epage>182</epage><pages>167-182</pages><issn>0737-4038</issn><issn>1537-1719</issn><eissn>1537-1719</eissn><abstract>Abstract Hybridization between species can either promote or impede adaptation. But we know very little about the genetic basis of hybrid fitness, especially in nondomesticated organisms, and when populations are facing environmental stress. We made genetically variable F2 hybrid populations from two divergent Saccharomyces yeast species. We exposed populations to ten toxins and sequenced the most resilient hybrids on low coverage using ddRADseq to investigate four aspects of their genomes: 1) hybridity, 2) interspecific heterozygosity, 3) epistasis (positive or negative associations between nonhomologous chromosomes), and 4) ploidy. We used linear mixed-effect models and simulations to measure to which extent hybrid genome composition was contingent on the environment. Genomes grown in different environments varied in every aspect of hybridness measured, revealing strong genotype–environment interactions. We also found selection against heterozygosity or directional selection for one of the parental alleles, with larger fitness of genomes carrying more homozygous allelic combinations in an otherwise hybrid genomic background. In addition, individual chromosomes and chromosomal interactions showed significant species biases and pervasive aneuploidies. Against our expectations, we observed multiple beneficial, opposite-species chromosome associations, confirmed by epistasis- and selection-free computer simulations, which is surprising given the large divergence of parental genomes (∼15%). Together, these results suggest that successful, stress-resilient hybrid genomes can be assembled from the best features of both parents without paying high costs of negative epistasis. This illustrates the importance of measuring genetic trait architecture in an environmental context when determining the evolutionary potential of genetically diverse hybrid populations.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>31518427</pmid><doi>10.1093/molbev/msz211</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-0831-7646</orcidid><orcidid>https://orcid.org/0000-0002-8530-0656</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0737-4038
ispartof Molecular biology and evolution, 2020-01, Vol.37 (1), p.167-182
issn 0737-4038
1537-1719
1537-1719
language eng
recordid cdi_swepub_primary_oai_DiVA_org_su_178775
source Oxford Open; PubMed Central; Free Full-Text Journals in Chemistry
subjects Chromosomes, Fungal
ddRADseq
Discoveries
environmental stress
epistasis
evolutionär genetik
Gene-Environment Interaction
Genetic Fitness
genome evolution
heterozygosity
hybridization
Hybridization, Genetic
Saccharomyces
Saccharomyces - genetics
Stress, Physiological
title Recombining Your Way Out of Trouble: The Genetic Architecture of Hybrid Fitness under Environmental Stress
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T14%3A40%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Recombining%20Your%20Way%20Out%20of%20Trouble:%20The%20Genetic%20Architecture%20of%20Hybrid%20Fitness%20under%20Environmental%20Stress&rft.jtitle=Molecular%20biology%20and%20evolution&rft.au=Zhang,%20Zebin&rft.date=2020-01-01&rft.volume=37&rft.issue=1&rft.spage=167&rft.epage=182&rft.pages=167-182&rft.issn=0737-4038&rft.eissn=1537-1719&rft_id=info:doi/10.1093/molbev/msz211&rft_dat=%3Cproquest_swepu%3E2290837476%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c457t-251cd351f9a12f8c1c3a0b88e775a89292d3b75c7f47e8221b5449d45f970f943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2290837476&rft_id=info:pmid/31518427&rft_oup_id=10.1093/molbev/msz211&rfr_iscdi=true