Loading…

Quantum Overlapping Tomography

It is now experimentally possible to entangle thousands of qubits, and efficiently measure each qubit in parallel in a distinct basis. To fully characterize an unknown entangled state of n qubits, one requires an exponential number of measurements in n, which is experimentally unfeasible even for mo...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters 2020-03, Vol.124 (10), p.100401-100401, Article 100401
Main Authors: Cotler, Jordan, Wilczek, Frank
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c504t-9ae4d85843a6d2ff70b7071329f16e5cb482d43fc75ba385dbe2b0e8cdb8379f3
cites cdi_FETCH-LOGICAL-c504t-9ae4d85843a6d2ff70b7071329f16e5cb482d43fc75ba385dbe2b0e8cdb8379f3
container_end_page 100401
container_issue 10
container_start_page 100401
container_title Physical review letters
container_volume 124
creator Cotler, Jordan
Wilczek, Frank
description It is now experimentally possible to entangle thousands of qubits, and efficiently measure each qubit in parallel in a distinct basis. To fully characterize an unknown entangled state of n qubits, one requires an exponential number of measurements in n, which is experimentally unfeasible even for modest system sizes. By leveraging (i) that single-qubit measurements can be made in parallel, and (ii) the theory of perfect hash families, we show that all k-qubit reduced density matrices of an n qubit state can be determined with at most e^{O(k)}log^{2}(n) rounds of parallel measurements. We provide concrete measurement protocols which realize this bound. As an example, we argue that with near-term experiments, every two-point correlator in a system of 1024 qubits could be measured and completely characterized in a few days. This corresponds to determining nearly 4.5 million correlators.
doi_str_mv 10.1103/PhysRevLett.124.100401
format article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_su_180591</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2384207008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-9ae4d85843a6d2ff70b7071329f16e5cb482d43fc75ba385dbe2b0e8cdb8379f3</originalsourceid><addsrcrecordid>eNpd0c9r2zAUwHExWtY0278QSnvZoU7fk2RLPoauvyCQbnS7ClmWE4fYciU7Jf99NZyVsZMun_d44kvIDGGOCOzmeXMIP-1-aft-jpTPEYADfiITBJEnApGfkAkAwyQHEGfkPIQtACDN5GdyxijFjFOYkNmPQbf90Fys9tbvdNfV7frixTVu7XW3OXwhp5XeBfv1-E7Jr_u7l9vHZLl6eLpdLBOTAu-TXFteylRyprOSVpWAQoBARvMKM5uagktaclYZkRaaybQsLC3ASlMWkom8YlNyPe4Nb7YbCtX5utH-oJyu1ff690I5v1ZhUCghzTHyy5G70NcqmLq3ZmNc21rTK8yASQ4RfRtR593rYEOvmjoYu9vp1rohKBoVBQEgI736j27d4Nv446hynjOZpTSqbFTGuxC8rT7ORFB_qqh_qqhYRY1V4uDsuH4oGlt-jP3NwN4BtAeI4Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2394938652</pqid></control><display><type>article</type><title>Quantum Overlapping Tomography</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Cotler, Jordan ; Wilczek, Frank</creator><creatorcontrib>Cotler, Jordan ; Wilczek, Frank</creatorcontrib><description>It is now experimentally possible to entangle thousands of qubits, and efficiently measure each qubit in parallel in a distinct basis. To fully characterize an unknown entangled state of n qubits, one requires an exponential number of measurements in n, which is experimentally unfeasible even for modest system sizes. By leveraging (i) that single-qubit measurements can be made in parallel, and (ii) the theory of perfect hash families, we show that all k-qubit reduced density matrices of an n qubit state can be determined with at most e^{O(k)}log^{2}(n) rounds of parallel measurements. We provide concrete measurement protocols which realize this bound. As an example, we argue that with near-term experiments, every two-point correlator in a system of 1024 qubits could be measured and completely characterized in a few days. This corresponds to determining nearly 4.5 million correlators.</description><identifier>ISSN: 0031-9007</identifier><identifier>ISSN: 1079-7114</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.124.100401</identifier><identifier>PMID: 32216420</identifier><language>eng</language><publisher>United States: American Physical Society</publisher><subject>Correlators ; Entangled states ; Qubits (quantum computing)</subject><ispartof>Physical review letters, 2020-03, Vol.124 (10), p.100401-100401, Article 100401</ispartof><rights>Copyright American Physical Society Mar 13, 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-9ae4d85843a6d2ff70b7071329f16e5cb482d43fc75ba385dbe2b0e8cdb8379f3</citedby><cites>FETCH-LOGICAL-c504t-9ae4d85843a6d2ff70b7071329f16e5cb482d43fc75ba385dbe2b0e8cdb8379f3</cites><orcidid>0000-0002-6489-6155 ; 0000000264896155</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32216420$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1603840$$D View this record in Osti.gov$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-180591$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Cotler, Jordan</creatorcontrib><creatorcontrib>Wilczek, Frank</creatorcontrib><title>Quantum Overlapping Tomography</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>It is now experimentally possible to entangle thousands of qubits, and efficiently measure each qubit in parallel in a distinct basis. To fully characterize an unknown entangled state of n qubits, one requires an exponential number of measurements in n, which is experimentally unfeasible even for modest system sizes. By leveraging (i) that single-qubit measurements can be made in parallel, and (ii) the theory of perfect hash families, we show that all k-qubit reduced density matrices of an n qubit state can be determined with at most e^{O(k)}log^{2}(n) rounds of parallel measurements. We provide concrete measurement protocols which realize this bound. As an example, we argue that with near-term experiments, every two-point correlator in a system of 1024 qubits could be measured and completely characterized in a few days. This corresponds to determining nearly 4.5 million correlators.</description><subject>Correlators</subject><subject>Entangled states</subject><subject>Qubits (quantum computing)</subject><issn>0031-9007</issn><issn>1079-7114</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpd0c9r2zAUwHExWtY0278QSnvZoU7fk2RLPoauvyCQbnS7ClmWE4fYciU7Jf99NZyVsZMun_d44kvIDGGOCOzmeXMIP-1-aft-jpTPEYADfiITBJEnApGfkAkAwyQHEGfkPIQtACDN5GdyxijFjFOYkNmPQbf90Fys9tbvdNfV7frixTVu7XW3OXwhp5XeBfv1-E7Jr_u7l9vHZLl6eLpdLBOTAu-TXFteylRyprOSVpWAQoBARvMKM5uagktaclYZkRaaybQsLC3ASlMWkom8YlNyPe4Nb7YbCtX5utH-oJyu1ff690I5v1ZhUCghzTHyy5G70NcqmLq3ZmNc21rTK8yASQ4RfRtR593rYEOvmjoYu9vp1rohKBoVBQEgI736j27d4Nv446hynjOZpTSqbFTGuxC8rT7ORFB_qqh_qqhYRY1V4uDsuH4oGlt-jP3NwN4BtAeI4Q</recordid><startdate>20200313</startdate><enddate>20200313</enddate><creator>Cotler, Jordan</creator><creator>Wilczek, Frank</creator><general>American Physical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><scope>OTOTI</scope><scope>ABAVF</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DG7</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0002-6489-6155</orcidid><orcidid>https://orcid.org/0000000264896155</orcidid></search><sort><creationdate>20200313</creationdate><title>Quantum Overlapping Tomography</title><author>Cotler, Jordan ; Wilczek, Frank</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-9ae4d85843a6d2ff70b7071329f16e5cb482d43fc75ba385dbe2b0e8cdb8379f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Correlators</topic><topic>Entangled states</topic><topic>Qubits (quantum computing)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cotler, Jordan</creatorcontrib><creatorcontrib>Wilczek, Frank</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>SWEPUB Stockholms universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Stockholms universitet</collection><collection>SwePub Articles full text</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cotler, Jordan</au><au>Wilczek, Frank</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum Overlapping Tomography</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2020-03-13</date><risdate>2020</risdate><volume>124</volume><issue>10</issue><spage>100401</spage><epage>100401</epage><pages>100401-100401</pages><artnum>100401</artnum><issn>0031-9007</issn><issn>1079-7114</issn><eissn>1079-7114</eissn><abstract>It is now experimentally possible to entangle thousands of qubits, and efficiently measure each qubit in parallel in a distinct basis. To fully characterize an unknown entangled state of n qubits, one requires an exponential number of measurements in n, which is experimentally unfeasible even for modest system sizes. By leveraging (i) that single-qubit measurements can be made in parallel, and (ii) the theory of perfect hash families, we show that all k-qubit reduced density matrices of an n qubit state can be determined with at most e^{O(k)}log^{2}(n) rounds of parallel measurements. We provide concrete measurement protocols which realize this bound. As an example, we argue that with near-term experiments, every two-point correlator in a system of 1024 qubits could be measured and completely characterized in a few days. This corresponds to determining nearly 4.5 million correlators.</abstract><cop>United States</cop><pub>American Physical Society</pub><pmid>32216420</pmid><doi>10.1103/PhysRevLett.124.100401</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-6489-6155</orcidid><orcidid>https://orcid.org/0000000264896155</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2020-03, Vol.124 (10), p.100401-100401, Article 100401
issn 0031-9007
1079-7114
1079-7114
language eng
recordid cdi_swepub_primary_oai_DiVA_org_su_180591
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
subjects Correlators
Entangled states
Qubits (quantum computing)
title Quantum Overlapping Tomography
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A09%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20Overlapping%20Tomography&rft.jtitle=Physical%20review%20letters&rft.au=Cotler,%20Jordan&rft.date=2020-03-13&rft.volume=124&rft.issue=10&rft.spage=100401&rft.epage=100401&rft.pages=100401-100401&rft.artnum=100401&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.124.100401&rft_dat=%3Cproquest_swepu%3E2384207008%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c504t-9ae4d85843a6d2ff70b7071329f16e5cb482d43fc75ba385dbe2b0e8cdb8379f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2394938652&rft_id=info:pmid/32216420&rfr_iscdi=true