Loading…
The effect of chronic low-dose environmental radiation on organ mass of bank voles in the Chernobyl exclusion zone
Animals are exposed to environmental ionizing radiation (IR) externally through proximity to contaminated soil and internally through ingestion and inhalation of radionuclides. Internal organs can respond to radioactive contamination through physiological stress. Chronic stress can compromise the si...
Saved in:
Published in: | International journal of radiation biology 2020-10, Vol.96 (10), p.1254-1262 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Animals are exposed to environmental ionizing radiation (IR) externally through proximity to contaminated soil and internally through ingestion and inhalation of radionuclides. Internal organs can respond to radioactive contamination through physiological stress. Chronic stress can compromise the size of physiologically active organs, but studies on wild mammal populations are scarce. The effects of environmental IR contamination on organ masses were studied by using a wild rodent inhabiting the Chernobyl exclusion zone (CEZ).
The masses of brain, heart, kidney, spleen, liver and lung were assessed from bank voles (Myodes glareolus) captured from areas across radioactive contamination gradient within the CEZ. Relative organ masses were used to correct for the body mass of an individual.
Results showed a significant negative correlation between IR level in the environment and relative brain and kidney mass. A significant positive correlation between IR and relative heart mass was also found. Principal component analysis (PCA) also suggested positive relationship between IR and relative spleen mass; however, this relationship was not significant when spleen was analyzed separately. There was no apparent relationship between IR and relative liver or lung mass.
Results suggest that in the wild populations even low but chronic doses of IR can lead to changes in relative organ mass. The novelty of these result is showing that exposure to low doses can affect the organ masses in similar fashion as previously shown on high, acute, radiation doses. These data support the hypothesis that wildlife might be more sensitive to IR than animals used in laboratory studies. However, more research is needed to rule out the other indirect effects such as radiosensitivity of the food sources or possible combined stress effects from e.g. infections. |
---|---|
ISSN: | 0955-3002 1362-3095 1362-3095 |
DOI: | 10.1080/09553002.2020.1793016 |