Loading…
Gold mobilization during metamorphic devolatilization of Archean and Paleoproterozoic metavolcanic rocks
Volcanic rocks in Archean and Paleoproterozoic greenstone belts are abundant and have been suggested as a potential Au source for orogenic Au deposits. The behavior of Au during metamorphism of these rocks is, however, poorly known. We present ultra-low-detection-limit Au analyses from a suite of va...
Saved in:
Published in: | Geology (Boulder) 2020-11, Vol.48 (11), p.1110-1114 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a417t-9a8bb5f06059443fc80b77dd431b2a671b625d2e793bd16beaec30f1257417903 |
---|---|
cites | cdi_FETCH-LOGICAL-a417t-9a8bb5f06059443fc80b77dd431b2a671b625d2e793bd16beaec30f1257417903 |
container_end_page | 1114 |
container_issue | 11 |
container_start_page | 1110 |
container_title | Geology (Boulder) |
container_volume | 48 |
creator | Patten, C. G. C Pitcairn, I. K Molnar, F Kolb, J Beaudoin, G Guilmette, C Peillod, A |
description | Volcanic rocks in Archean and Paleoproterozoic greenstone belts are abundant and have been suggested as a potential Au source for orogenic Au deposits. The behavior of Au during metamorphism of these rocks is, however, poorly known. We present ultra-low-detection-limit Au analyses from a suite of variably metamorphosed rocks from the Archean La Grande subprovince, Canada, and the Paleoproterozoic Central Lapland greenstone belt, Finland. Both areas are well endowed in Au and have great potential for discovery of new orogenic Au deposits. The metavolcanic rocks in these belts are grouped into tholeiite and calc-alkaline magmatic series, for which the protolith Au contents are calculated using Au versus Zr/Y power-law regressions from greenschist facies samples. In the tholeiitic rocks, Au is compatible during magmatic processes and decreases with differentiation, whereas in the calc-alkaline rocks, Au is incompatible and increases with differentiation. Mass-variation calculations show that as much as 77% and 59% of the initial Au content is lost during progressive metamorphism to upper amphibolite facies conditions (>550°C) in La Grande and Central Lapland respectively. This study highlights, first, that metavolcanic rocks release Au during metamorphism in Archean and Paleoproterozoic greenstone belts and are thus a good potential source rocks for orogenic Au deposits; second, that the Au fertility of the metavolcanic rocks is controlled by their mantle source and magmatic evolution; and third, that the metamorphic devolatilization model can be applied to Archean and Paleoproterozoic orogenic Au deposits. |
doi_str_mv | 10.1130/G47658.1 |
format | article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_su_188166</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2459434203</sourcerecordid><originalsourceid>FETCH-LOGICAL-a417t-9a8bb5f06059443fc80b77dd431b2a671b625d2e793bd16beaec30f1257417903</originalsourceid><addsrcrecordid>eNpNkE1r3DAQhkVpoNs00J9g6KWQONVIsmQfl7TdFgLJIclV6Mu7Sr2ejWQ3JL--Ci4hp2GY53l5GUI-Az0H4PTbRijZtOfwjqygE7xmsmXvyYrSDmolgX8gH3O-pxREo9oV2W1w8NUebRzis5kijpWfUxy31T5MZo_psIuu8uEvDuX6ymBfrZPbBTNWZvTVtRkCHhJOIeEzFuFFLoozY1kSuj_5EznqzZDDyf95TG5__ri5-FVfXm1-X6wvayNATXVnWmubnkradELw3rXUKuW94GCZkQqsZI1nQXXcepA2mOA47YE1qvgd5cfkbMnNj-EwW31IcW_Sk0YT9fd4t9aYtjrPGtoWpCz4lwUv7R_mkCd9j3MaS0PNRKnABaO8UF8XyiXMOYX-NRaofnm7Xt6uoaCnC7oNmF0MowuPmAb_JpcyqqlUvKT_A27mhNk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2459434203</pqid></control><display><type>article</type><title>Gold mobilization during metamorphic devolatilization of Archean and Paleoproterozoic metavolcanic rocks</title><source>地球科学世界出版社期刊(NSTL购买)</source><creator>Patten, C. G. C ; Pitcairn, I. K ; Molnar, F ; Kolb, J ; Beaudoin, G ; Guilmette, C ; Peillod, A</creator><creatorcontrib>Patten, C. G. C ; Pitcairn, I. K ; Molnar, F ; Kolb, J ; Beaudoin, G ; Guilmette, C ; Peillod, A</creatorcontrib><description>Volcanic rocks in Archean and Paleoproterozoic greenstone belts are abundant and have been suggested as a potential Au source for orogenic Au deposits. The behavior of Au during metamorphism of these rocks is, however, poorly known. We present ultra-low-detection-limit Au analyses from a suite of variably metamorphosed rocks from the Archean La Grande subprovince, Canada, and the Paleoproterozoic Central Lapland greenstone belt, Finland. Both areas are well endowed in Au and have great potential for discovery of new orogenic Au deposits. The metavolcanic rocks in these belts are grouped into tholeiite and calc-alkaline magmatic series, for which the protolith Au contents are calculated using Au versus Zr/Y power-law regressions from greenschist facies samples. In the tholeiitic rocks, Au is compatible during magmatic processes and decreases with differentiation, whereas in the calc-alkaline rocks, Au is incompatible and increases with differentiation. Mass-variation calculations show that as much as 77% and 59% of the initial Au content is lost during progressive metamorphism to upper amphibolite facies conditions (>550°C) in La Grande and Central Lapland respectively. This study highlights, first, that metavolcanic rocks release Au during metamorphism in Archean and Paleoproterozoic greenstone belts and are thus a good potential source rocks for orogenic Au deposits; second, that the Au fertility of the metavolcanic rocks is controlled by their mantle source and magmatic evolution; and third, that the metamorphic devolatilization model can be applied to Archean and Paleoproterozoic orogenic Au deposits.</description><identifier>ISSN: 0091-7613</identifier><identifier>ISSN: 1943-2682</identifier><identifier>EISSN: 1943-2682</identifier><identifier>DOI: 10.1130/G47658.1</identifier><language>eng</language><publisher>Boulder: Geological Society of America (GSA)</publisher><subject>Amphibolite facies ; Amphibolites ; Archean ; basalts ; Belts ; calc-alkalic composition ; Canada ; Canadian Shield ; Deposits ; Devolatilization ; Differentiation ; Europe ; facies ; Fertility ; Finland ; Geochemistry ; Geology ; Gold ; gold ores ; Greenschist facies ; greenstone belts ; igneous and metamorphic rocks ; igneous rocks ; incompatible elements ; Isotopes ; La Grande Subprovince ; Lapland ; Magma ; magmatic differentiation ; mantle ; metal ores ; metals ; metamorphic belts ; metamorphic rocks ; Metamorphism ; metavolcanic rocks ; mobilization ; North America ; orogenic belts ; Orogeny ; Paleoproterozoic ; Petrology ; potential deposits ; Precambrian ; prograde metamorphism ; Proterozoic ; Regression analysis ; rock, sediment, soil ; Rocks ; Scandinavia ; Superior Province ; Tholeiite ; trace elements ; upper Precambrian ; Volcanic rocks ; Western Europe ; Zirconium</subject><ispartof>Geology (Boulder), 2020-11, Vol.48 (11), p.1110-1114</ispartof><rights>GeoRef, Copyright 2022, American Geosciences Institute. Reference includes data from GeoScienceWorld @Alexandria, VA @USA @United States. Reference includes data supplied by the Geological Society of America @Boulder, CO @USA @United States</rights><rights>Copyright Geological Society of America Nov 1, 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a417t-9a8bb5f06059443fc80b77dd431b2a671b625d2e793bd16beaec30f1257417903</citedby><cites>FETCH-LOGICAL-a417t-9a8bb5f06059443fc80b77dd431b2a671b625d2e793bd16beaec30f1257417903</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.geoscienceworld.org/lithosphere/article-lookup?doi=10.1130/G47658.1$$EHTML$$P50$$Ggeoscienceworld$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,38881,77824</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-188166$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Patten, C. G. C</creatorcontrib><creatorcontrib>Pitcairn, I. K</creatorcontrib><creatorcontrib>Molnar, F</creatorcontrib><creatorcontrib>Kolb, J</creatorcontrib><creatorcontrib>Beaudoin, G</creatorcontrib><creatorcontrib>Guilmette, C</creatorcontrib><creatorcontrib>Peillod, A</creatorcontrib><title>Gold mobilization during metamorphic devolatilization of Archean and Paleoproterozoic metavolcanic rocks</title><title>Geology (Boulder)</title><description>Volcanic rocks in Archean and Paleoproterozoic greenstone belts are abundant and have been suggested as a potential Au source for orogenic Au deposits. The behavior of Au during metamorphism of these rocks is, however, poorly known. We present ultra-low-detection-limit Au analyses from a suite of variably metamorphosed rocks from the Archean La Grande subprovince, Canada, and the Paleoproterozoic Central Lapland greenstone belt, Finland. Both areas are well endowed in Au and have great potential for discovery of new orogenic Au deposits. The metavolcanic rocks in these belts are grouped into tholeiite and calc-alkaline magmatic series, for which the protolith Au contents are calculated using Au versus Zr/Y power-law regressions from greenschist facies samples. In the tholeiitic rocks, Au is compatible during magmatic processes and decreases with differentiation, whereas in the calc-alkaline rocks, Au is incompatible and increases with differentiation. Mass-variation calculations show that as much as 77% and 59% of the initial Au content is lost during progressive metamorphism to upper amphibolite facies conditions (>550°C) in La Grande and Central Lapland respectively. This study highlights, first, that metavolcanic rocks release Au during metamorphism in Archean and Paleoproterozoic greenstone belts and are thus a good potential source rocks for orogenic Au deposits; second, that the Au fertility of the metavolcanic rocks is controlled by their mantle source and magmatic evolution; and third, that the metamorphic devolatilization model can be applied to Archean and Paleoproterozoic orogenic Au deposits.</description><subject>Amphibolite facies</subject><subject>Amphibolites</subject><subject>Archean</subject><subject>basalts</subject><subject>Belts</subject><subject>calc-alkalic composition</subject><subject>Canada</subject><subject>Canadian Shield</subject><subject>Deposits</subject><subject>Devolatilization</subject><subject>Differentiation</subject><subject>Europe</subject><subject>facies</subject><subject>Fertility</subject><subject>Finland</subject><subject>Geochemistry</subject><subject>Geology</subject><subject>Gold</subject><subject>gold ores</subject><subject>Greenschist facies</subject><subject>greenstone belts</subject><subject>igneous and metamorphic rocks</subject><subject>igneous rocks</subject><subject>incompatible elements</subject><subject>Isotopes</subject><subject>La Grande Subprovince</subject><subject>Lapland</subject><subject>Magma</subject><subject>magmatic differentiation</subject><subject>mantle</subject><subject>metal ores</subject><subject>metals</subject><subject>metamorphic belts</subject><subject>metamorphic rocks</subject><subject>Metamorphism</subject><subject>metavolcanic rocks</subject><subject>mobilization</subject><subject>North America</subject><subject>orogenic belts</subject><subject>Orogeny</subject><subject>Paleoproterozoic</subject><subject>Petrology</subject><subject>potential deposits</subject><subject>Precambrian</subject><subject>prograde metamorphism</subject><subject>Proterozoic</subject><subject>Regression analysis</subject><subject>rock, sediment, soil</subject><subject>Rocks</subject><subject>Scandinavia</subject><subject>Superior Province</subject><subject>Tholeiite</subject><subject>trace elements</subject><subject>upper Precambrian</subject><subject>Volcanic rocks</subject><subject>Western Europe</subject><subject>Zirconium</subject><issn>0091-7613</issn><issn>1943-2682</issn><issn>1943-2682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpNkE1r3DAQhkVpoNs00J9g6KWQONVIsmQfl7TdFgLJIclV6Mu7Sr2ejWQ3JL--Ci4hp2GY53l5GUI-Az0H4PTbRijZtOfwjqygE7xmsmXvyYrSDmolgX8gH3O-pxREo9oV2W1w8NUebRzis5kijpWfUxy31T5MZo_psIuu8uEvDuX6ymBfrZPbBTNWZvTVtRkCHhJOIeEzFuFFLoozY1kSuj_5EznqzZDDyf95TG5__ri5-FVfXm1-X6wvayNATXVnWmubnkradELw3rXUKuW94GCZkQqsZI1nQXXcepA2mOA47YE1qvgd5cfkbMnNj-EwW31IcW_Sk0YT9fd4t9aYtjrPGtoWpCz4lwUv7R_mkCd9j3MaS0PNRKnABaO8UF8XyiXMOYX-NRaofnm7Xt6uoaCnC7oNmF0MowuPmAb_JpcyqqlUvKT_A27mhNk</recordid><startdate>20201101</startdate><enddate>20201101</enddate><creator>Patten, C. G. C</creator><creator>Pitcairn, I. K</creator><creator>Molnar, F</creator><creator>Kolb, J</creator><creator>Beaudoin, G</creator><creator>Guilmette, C</creator><creator>Peillod, A</creator><general>Geological Society of America (GSA)</general><general>Geological Society of America</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DG7</scope></search><sort><creationdate>20201101</creationdate><title>Gold mobilization during metamorphic devolatilization of Archean and Paleoproterozoic metavolcanic rocks</title><author>Patten, C. G. C ; Pitcairn, I. K ; Molnar, F ; Kolb, J ; Beaudoin, G ; Guilmette, C ; Peillod, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a417t-9a8bb5f06059443fc80b77dd431b2a671b625d2e793bd16beaec30f1257417903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amphibolite facies</topic><topic>Amphibolites</topic><topic>Archean</topic><topic>basalts</topic><topic>Belts</topic><topic>calc-alkalic composition</topic><topic>Canada</topic><topic>Canadian Shield</topic><topic>Deposits</topic><topic>Devolatilization</topic><topic>Differentiation</topic><topic>Europe</topic><topic>facies</topic><topic>Fertility</topic><topic>Finland</topic><topic>Geochemistry</topic><topic>Geology</topic><topic>Gold</topic><topic>gold ores</topic><topic>Greenschist facies</topic><topic>greenstone belts</topic><topic>igneous and metamorphic rocks</topic><topic>igneous rocks</topic><topic>incompatible elements</topic><topic>Isotopes</topic><topic>La Grande Subprovince</topic><topic>Lapland</topic><topic>Magma</topic><topic>magmatic differentiation</topic><topic>mantle</topic><topic>metal ores</topic><topic>metals</topic><topic>metamorphic belts</topic><topic>metamorphic rocks</topic><topic>Metamorphism</topic><topic>metavolcanic rocks</topic><topic>mobilization</topic><topic>North America</topic><topic>orogenic belts</topic><topic>Orogeny</topic><topic>Paleoproterozoic</topic><topic>Petrology</topic><topic>potential deposits</topic><topic>Precambrian</topic><topic>prograde metamorphism</topic><topic>Proterozoic</topic><topic>Regression analysis</topic><topic>rock, sediment, soil</topic><topic>Rocks</topic><topic>Scandinavia</topic><topic>Superior Province</topic><topic>Tholeiite</topic><topic>trace elements</topic><topic>upper Precambrian</topic><topic>Volcanic rocks</topic><topic>Western Europe</topic><topic>Zirconium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patten, C. G. C</creatorcontrib><creatorcontrib>Pitcairn, I. K</creatorcontrib><creatorcontrib>Molnar, F</creatorcontrib><creatorcontrib>Kolb, J</creatorcontrib><creatorcontrib>Beaudoin, G</creatorcontrib><creatorcontrib>Guilmette, C</creatorcontrib><creatorcontrib>Peillod, A</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Stockholms universitet</collection><jtitle>Geology (Boulder)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patten, C. G. C</au><au>Pitcairn, I. K</au><au>Molnar, F</au><au>Kolb, J</au><au>Beaudoin, G</au><au>Guilmette, C</au><au>Peillod, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gold mobilization during metamorphic devolatilization of Archean and Paleoproterozoic metavolcanic rocks</atitle><jtitle>Geology (Boulder)</jtitle><date>2020-11-01</date><risdate>2020</risdate><volume>48</volume><issue>11</issue><spage>1110</spage><epage>1114</epage><pages>1110-1114</pages><issn>0091-7613</issn><issn>1943-2682</issn><eissn>1943-2682</eissn><abstract>Volcanic rocks in Archean and Paleoproterozoic greenstone belts are abundant and have been suggested as a potential Au source for orogenic Au deposits. The behavior of Au during metamorphism of these rocks is, however, poorly known. We present ultra-low-detection-limit Au analyses from a suite of variably metamorphosed rocks from the Archean La Grande subprovince, Canada, and the Paleoproterozoic Central Lapland greenstone belt, Finland. Both areas are well endowed in Au and have great potential for discovery of new orogenic Au deposits. The metavolcanic rocks in these belts are grouped into tholeiite and calc-alkaline magmatic series, for which the protolith Au contents are calculated using Au versus Zr/Y power-law regressions from greenschist facies samples. In the tholeiitic rocks, Au is compatible during magmatic processes and decreases with differentiation, whereas in the calc-alkaline rocks, Au is incompatible and increases with differentiation. Mass-variation calculations show that as much as 77% and 59% of the initial Au content is lost during progressive metamorphism to upper amphibolite facies conditions (>550°C) in La Grande and Central Lapland respectively. This study highlights, first, that metavolcanic rocks release Au during metamorphism in Archean and Paleoproterozoic greenstone belts and are thus a good potential source rocks for orogenic Au deposits; second, that the Au fertility of the metavolcanic rocks is controlled by their mantle source and magmatic evolution; and third, that the metamorphic devolatilization model can be applied to Archean and Paleoproterozoic orogenic Au deposits.</abstract><cop>Boulder</cop><pub>Geological Society of America (GSA)</pub><doi>10.1130/G47658.1</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0091-7613 |
ispartof | Geology (Boulder), 2020-11, Vol.48 (11), p.1110-1114 |
issn | 0091-7613 1943-2682 1943-2682 |
language | eng |
recordid | cdi_swepub_primary_oai_DiVA_org_su_188166 |
source | 地球科学世界出版社期刊(NSTL购买) |
subjects | Amphibolite facies Amphibolites Archean basalts Belts calc-alkalic composition Canada Canadian Shield Deposits Devolatilization Differentiation Europe facies Fertility Finland Geochemistry Geology Gold gold ores Greenschist facies greenstone belts igneous and metamorphic rocks igneous rocks incompatible elements Isotopes La Grande Subprovince Lapland Magma magmatic differentiation mantle metal ores metals metamorphic belts metamorphic rocks Metamorphism metavolcanic rocks mobilization North America orogenic belts Orogeny Paleoproterozoic Petrology potential deposits Precambrian prograde metamorphism Proterozoic Regression analysis rock, sediment, soil Rocks Scandinavia Superior Province Tholeiite trace elements upper Precambrian Volcanic rocks Western Europe Zirconium |
title | Gold mobilization during metamorphic devolatilization of Archean and Paleoproterozoic metavolcanic rocks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T11%3A32%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gold%20mobilization%20during%20metamorphic%20devolatilization%20of%20Archean%20and%20Paleoproterozoic%20metavolcanic%20rocks&rft.jtitle=Geology%20(Boulder)&rft.au=Patten,%20C.%20G.%20C&rft.date=2020-11-01&rft.volume=48&rft.issue=11&rft.spage=1110&rft.epage=1114&rft.pages=1110-1114&rft.issn=0091-7613&rft.eissn=1943-2682&rft_id=info:doi/10.1130/G47658.1&rft_dat=%3Cproquest_swepu%3E2459434203%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a417t-9a8bb5f06059443fc80b77dd431b2a671b625d2e793bd16beaec30f1257417903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2459434203&rft_id=info:pmid/&rfr_iscdi=true |