Loading…

Plasmonic Coupling in Silver Nanoparticle Aggregates and Their Polymer Composite Films for Near-Infrared Photothermal Biofilm Eradication

Plasmonic nanoparticles with near-IR (NIR) light absorption are highly attractive in biomedicine for minimally invasive photothermal treatments. However, these optical properties are typically exhibited by plasmonic nanostructures with complex, nonspherical geometries that may prohibit their broad c...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied nano materials 2021-05, Vol.4 (5), p.5330-5339
Main Authors: Merkl, Padryk, Zhou, Shuzhi, Zaganiaris, Apostolos, Shahata, Mariam, Eleftheraki, Athina, Thersleff, Thomas, Sotiriou, Georgios A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Plasmonic nanoparticles with near-IR (NIR) light absorption are highly attractive in biomedicine for minimally invasive photothermal treatments. However, these optical properties are typically exhibited by plasmonic nanostructures with complex, nonspherical geometries that may prohibit their broad commercialization and further integration into photothermal devices. Herein, we present the single-step aerosol self-assembly of plasmonic nanoaggregates that consisted of spherical silver nanoparticles with tunable extinction from visible to NIR wavelengths. This tunable extinction was achieved by the addition of SiO2 during the flame synthesis of the nanoparticles, which acted as a dielectric spacer between the spherical silver nanoparticles and was also computationally validated by simulating the extinction spectra of similar silver nanoaggregates. These plasmonic nanoaggregates were easily deposited on silicone polymeric surfaces and further encased with a top polymer layer, forming plasmonic photothermal nanocomposite films. The photothermal properties of the NIR nanocomposite films were utilized to eradicate the established biofilms of clinically relevant Escherichia coli and Staphylococcus aureus, with a relationship observed between the final surface temperature and biofilm eradication.
ISSN:2574-0970
2574-0970
DOI:10.1021/acsanm.1c00668