Loading…

Bayesian Stokes inversion with normalizing flows

Stokes inversion techniques are very powerful methods for obtaining information on the thermodynamic and magnetic properties of solar and stellar atmospheres. In recent years, highly sophisticated inversion codes have been developed that are now routinely applied to spectro-polarimetric observations...

Full description

Saved in:
Bibliographic Details
Published in:Astronomy and astrophysics (Berlin) 2022-03, Vol.659, p.A165
Main Authors: Díaz Baso, C. J., Asensio Ramos, A., de la Cruz Rodríguez, J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c359t-144508b3d7c526bb207f72c78e105080367d931afe37d01f1a4ec2fc384310b23
cites cdi_FETCH-LOGICAL-c359t-144508b3d7c526bb207f72c78e105080367d931afe37d01f1a4ec2fc384310b23
container_end_page
container_issue
container_start_page A165
container_title Astronomy and astrophysics (Berlin)
container_volume 659
creator Díaz Baso, C. J.
Asensio Ramos, A.
de la Cruz Rodríguez, J.
description Stokes inversion techniques are very powerful methods for obtaining information on the thermodynamic and magnetic properties of solar and stellar atmospheres. In recent years, highly sophisticated inversion codes have been developed that are now routinely applied to spectro-polarimetric observations. Most of these inversion codes are designed to find an optimum solution to the nonlinear inverse problem. However, to obtain the location of potentially multimodal cases (ambiguities), the degeneracies and the uncertainties of each parameter inferred from the inversions algorithms – such as Markov chain Monte Carlo (MCMC) – require evaluation of the likelihood of the model thousand of times and are computationally costly. Variational methods are a quick alternative to Monte Carlo methods, and approximate the posterior distribution by a parametrized distribution. In this study, we introduce a highly flexible variational inference method to perform fast Bayesian inference, known as normalizing flows. Normalizing flows are a set of invertible, differentiable, and parametric transformations that convert a simple distribution into an approximation of any other complex distribution. If the transformations are conditioned on observations, the normalizing flows can be trained to return Bayesian posterior probability estimates for any observation. We illustrate the ability of the method using a simple Milne-Eddington model and a complex non-local thermodynamic equilibrium (NLTE) inversion. The method is extremely general and other more complex forward models can be applied. The training procedure need only be performed once for a given prior parameter space and the resulting network can then generate samples describing the posterior distribution several orders of magnitude faster than existing techniques.
doi_str_mv 10.1051/0004-6361/202142018
format article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_su_203503</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2657863180</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-144508b3d7c526bb207f72c78e105080367d931afe37d01f1a4ec2fc384310b23</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwBWwisSV0xuPE6bKUp1SJBY-t5aR2cWnjYidE5etJVdTVaKSje68OY5cINwgZjgBApDnlOOLAUXDA4ogNUBBPQYr8mA0OxCk7i3HZvxwLGjC41VsTna6T18Z_mZi4-seE6HyddK75TGof1nrlfl29SOzKd_GcnVi9iubi_w7Z-8P92_Qpnb08Pk8ns7SibNykKEQGRUlzWWU8L0sO0kpeycL0g6EAyuV8TKitITkHtKiFqbitqBCEUHIasut9buzMpi3VJri1DlvltVN37mOifFio2CoOlAH1-NUe3wT_3ZrYqKVvQ90vVDzPZJET9qVDRnuqCj7GYOwhFkHtTKqdJ7XzpA4m6Q_tyGQM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2657863180</pqid></control><display><type>article</type><title>Bayesian Stokes inversion with normalizing flows</title><source>EZB Free E-Journals</source><creator>Díaz Baso, C. J. ; Asensio Ramos, A. ; de la Cruz Rodríguez, J.</creator><creatorcontrib>Díaz Baso, C. J. ; Asensio Ramos, A. ; de la Cruz Rodríguez, J.</creatorcontrib><description>Stokes inversion techniques are very powerful methods for obtaining information on the thermodynamic and magnetic properties of solar and stellar atmospheres. In recent years, highly sophisticated inversion codes have been developed that are now routinely applied to spectro-polarimetric observations. Most of these inversion codes are designed to find an optimum solution to the nonlinear inverse problem. However, to obtain the location of potentially multimodal cases (ambiguities), the degeneracies and the uncertainties of each parameter inferred from the inversions algorithms – such as Markov chain Monte Carlo (MCMC) – require evaluation of the likelihood of the model thousand of times and are computationally costly. Variational methods are a quick alternative to Monte Carlo methods, and approximate the posterior distribution by a parametrized distribution. In this study, we introduce a highly flexible variational inference method to perform fast Bayesian inference, known as normalizing flows. Normalizing flows are a set of invertible, differentiable, and parametric transformations that convert a simple distribution into an approximation of any other complex distribution. If the transformations are conditioned on observations, the normalizing flows can be trained to return Bayesian posterior probability estimates for any observation. We illustrate the ability of the method using a simple Milne-Eddington model and a complex non-local thermodynamic equilibrium (NLTE) inversion. The method is extremely general and other more complex forward models can be applied. The training procedure need only be performed once for a given prior parameter space and the resulting network can then generate samples describing the posterior distribution several orders of magnitude faster than existing techniques.</description><identifier>ISSN: 0004-6361</identifier><identifier>ISSN: 1432-0746</identifier><identifier>EISSN: 1432-0746</identifier><identifier>DOI: 10.1051/0004-6361/202142018</identifier><language>eng</language><publisher>Heidelberg: EDP Sciences</publisher><subject>Algorithms ; Approximation ; Bayesian analysis ; Conditional probability ; Inverse problems ; Inversions ; line: formation ; Local thermodynamic equilibrium ; Magnetic properties ; Markov chains ; Mathematical models ; methods: data analysis ; Monte Carlo simulation ; Normalizing (statistics) ; Parameters ; radiative transfer ; Statistical inference ; Stellar atmospheres ; Sun: activity ; Sun: atmosphere ; Thermodynamics ; Variational methods</subject><ispartof>Astronomy and astrophysics (Berlin), 2022-03, Vol.659, p.A165</ispartof><rights>Copyright EDP Sciences Mar 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-144508b3d7c526bb207f72c78e105080367d931afe37d01f1a4ec2fc384310b23</citedby><cites>FETCH-LOGICAL-c359t-144508b3d7c526bb207f72c78e105080367d931afe37d01f1a4ec2fc384310b23</cites><orcidid>0000-0002-4640-5658 ; 0000-0001-9239-9482 ; 0000-0002-1248-0553</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-203503$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Díaz Baso, C. J.</creatorcontrib><creatorcontrib>Asensio Ramos, A.</creatorcontrib><creatorcontrib>de la Cruz Rodríguez, J.</creatorcontrib><title>Bayesian Stokes inversion with normalizing flows</title><title>Astronomy and astrophysics (Berlin)</title><description>Stokes inversion techniques are very powerful methods for obtaining information on the thermodynamic and magnetic properties of solar and stellar atmospheres. In recent years, highly sophisticated inversion codes have been developed that are now routinely applied to spectro-polarimetric observations. Most of these inversion codes are designed to find an optimum solution to the nonlinear inverse problem. However, to obtain the location of potentially multimodal cases (ambiguities), the degeneracies and the uncertainties of each parameter inferred from the inversions algorithms – such as Markov chain Monte Carlo (MCMC) – require evaluation of the likelihood of the model thousand of times and are computationally costly. Variational methods are a quick alternative to Monte Carlo methods, and approximate the posterior distribution by a parametrized distribution. In this study, we introduce a highly flexible variational inference method to perform fast Bayesian inference, known as normalizing flows. Normalizing flows are a set of invertible, differentiable, and parametric transformations that convert a simple distribution into an approximation of any other complex distribution. If the transformations are conditioned on observations, the normalizing flows can be trained to return Bayesian posterior probability estimates for any observation. We illustrate the ability of the method using a simple Milne-Eddington model and a complex non-local thermodynamic equilibrium (NLTE) inversion. The method is extremely general and other more complex forward models can be applied. The training procedure need only be performed once for a given prior parameter space and the resulting network can then generate samples describing the posterior distribution several orders of magnitude faster than existing techniques.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Bayesian analysis</subject><subject>Conditional probability</subject><subject>Inverse problems</subject><subject>Inversions</subject><subject>line: formation</subject><subject>Local thermodynamic equilibrium</subject><subject>Magnetic properties</subject><subject>Markov chains</subject><subject>Mathematical models</subject><subject>methods: data analysis</subject><subject>Monte Carlo simulation</subject><subject>Normalizing (statistics)</subject><subject>Parameters</subject><subject>radiative transfer</subject><subject>Statistical inference</subject><subject>Stellar atmospheres</subject><subject>Sun: activity</subject><subject>Sun: atmosphere</subject><subject>Thermodynamics</subject><subject>Variational methods</subject><issn>0004-6361</issn><issn>1432-0746</issn><issn>1432-0746</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRS0EEqXwBWwisSV0xuPE6bKUp1SJBY-t5aR2cWnjYidE5etJVdTVaKSje68OY5cINwgZjgBApDnlOOLAUXDA4ogNUBBPQYr8mA0OxCk7i3HZvxwLGjC41VsTna6T18Z_mZi4-seE6HyddK75TGof1nrlfl29SOzKd_GcnVi9iubi_w7Z-8P92_Qpnb08Pk8ns7SibNykKEQGRUlzWWU8L0sO0kpeycL0g6EAyuV8TKitITkHtKiFqbitqBCEUHIasut9buzMpi3VJri1DlvltVN37mOifFio2CoOlAH1-NUe3wT_3ZrYqKVvQ90vVDzPZJET9qVDRnuqCj7GYOwhFkHtTKqdJ7XzpA4m6Q_tyGQM</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Díaz Baso, C. J.</creator><creator>Asensio Ramos, A.</creator><creator>de la Cruz Rodríguez, J.</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DG7</scope><orcidid>https://orcid.org/0000-0002-4640-5658</orcidid><orcidid>https://orcid.org/0000-0001-9239-9482</orcidid><orcidid>https://orcid.org/0000-0002-1248-0553</orcidid></search><sort><creationdate>20220301</creationdate><title>Bayesian Stokes inversion with normalizing flows</title><author>Díaz Baso, C. J. ; Asensio Ramos, A. ; de la Cruz Rodríguez, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-144508b3d7c526bb207f72c78e105080367d931afe37d01f1a4ec2fc384310b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Bayesian analysis</topic><topic>Conditional probability</topic><topic>Inverse problems</topic><topic>Inversions</topic><topic>line: formation</topic><topic>Local thermodynamic equilibrium</topic><topic>Magnetic properties</topic><topic>Markov chains</topic><topic>Mathematical models</topic><topic>methods: data analysis</topic><topic>Monte Carlo simulation</topic><topic>Normalizing (statistics)</topic><topic>Parameters</topic><topic>radiative transfer</topic><topic>Statistical inference</topic><topic>Stellar atmospheres</topic><topic>Sun: activity</topic><topic>Sun: atmosphere</topic><topic>Thermodynamics</topic><topic>Variational methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Díaz Baso, C. J.</creatorcontrib><creatorcontrib>Asensio Ramos, A.</creatorcontrib><creatorcontrib>de la Cruz Rodríguez, J.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Stockholms universitet</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Díaz Baso, C. J.</au><au>Asensio Ramos, A.</au><au>de la Cruz Rodríguez, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesian Stokes inversion with normalizing flows</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2022-03-01</date><risdate>2022</risdate><volume>659</volume><spage>A165</spage><pages>A165-</pages><issn>0004-6361</issn><issn>1432-0746</issn><eissn>1432-0746</eissn><abstract>Stokes inversion techniques are very powerful methods for obtaining information on the thermodynamic and magnetic properties of solar and stellar atmospheres. In recent years, highly sophisticated inversion codes have been developed that are now routinely applied to spectro-polarimetric observations. Most of these inversion codes are designed to find an optimum solution to the nonlinear inverse problem. However, to obtain the location of potentially multimodal cases (ambiguities), the degeneracies and the uncertainties of each parameter inferred from the inversions algorithms – such as Markov chain Monte Carlo (MCMC) – require evaluation of the likelihood of the model thousand of times and are computationally costly. Variational methods are a quick alternative to Monte Carlo methods, and approximate the posterior distribution by a parametrized distribution. In this study, we introduce a highly flexible variational inference method to perform fast Bayesian inference, known as normalizing flows. Normalizing flows are a set of invertible, differentiable, and parametric transformations that convert a simple distribution into an approximation of any other complex distribution. If the transformations are conditioned on observations, the normalizing flows can be trained to return Bayesian posterior probability estimates for any observation. We illustrate the ability of the method using a simple Milne-Eddington model and a complex non-local thermodynamic equilibrium (NLTE) inversion. The method is extremely general and other more complex forward models can be applied. The training procedure need only be performed once for a given prior parameter space and the resulting network can then generate samples describing the posterior distribution several orders of magnitude faster than existing techniques.</abstract><cop>Heidelberg</cop><pub>EDP Sciences</pub><doi>10.1051/0004-6361/202142018</doi><orcidid>https://orcid.org/0000-0002-4640-5658</orcidid><orcidid>https://orcid.org/0000-0001-9239-9482</orcidid><orcidid>https://orcid.org/0000-0002-1248-0553</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-6361
ispartof Astronomy and astrophysics (Berlin), 2022-03, Vol.659, p.A165
issn 0004-6361
1432-0746
1432-0746
language eng
recordid cdi_swepub_primary_oai_DiVA_org_su_203503
source EZB Free E-Journals
subjects Algorithms
Approximation
Bayesian analysis
Conditional probability
Inverse problems
Inversions
line: formation
Local thermodynamic equilibrium
Magnetic properties
Markov chains
Mathematical models
methods: data analysis
Monte Carlo simulation
Normalizing (statistics)
Parameters
radiative transfer
Statistical inference
Stellar atmospheres
Sun: activity
Sun: atmosphere
Thermodynamics
Variational methods
title Bayesian Stokes inversion with normalizing flows
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A38%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesian%20Stokes%20inversion%20with%20normalizing%20flows&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=D%C3%ADaz%20Baso,%20C.%20J.&rft.date=2022-03-01&rft.volume=659&rft.spage=A165&rft.pages=A165-&rft.issn=0004-6361&rft.eissn=1432-0746&rft_id=info:doi/10.1051/0004-6361/202142018&rft_dat=%3Cproquest_swepu%3E2657863180%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-144508b3d7c526bb207f72c78e105080367d931afe37d01f1a4ec2fc384310b23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2657863180&rft_id=info:pmid/&rfr_iscdi=true