Loading…
Asymptotic interpretation of the Miles mechanism of wind-wave instability
When wind blows over water, ripples are generated on the water surface. These ripples can be regarded as perturbations of the wind field, which is modelled as a parallel inviscid flow. For a given wavenumber $k$, the perturbed streamfunction of the wind field and the complex phase speed are the eige...
Saved in:
Published in: | Journal of fluid mechanics 2022-08, Vol.944, Article A8 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | When wind blows over water, ripples are generated on the water surface. These ripples can be regarded as perturbations of the wind field, which is modelled as a parallel inviscid flow. For a given wavenumber $k$, the perturbed streamfunction of the wind field and the complex phase speed are the eigenfunction and the eigenvalue of the so-called Rayleigh equation in a semi-infinite domain. Because of the small air–water density ratio, $\rho _{{a}}/\rho _{{w}}\equiv \epsilon \ll 1$, the wind and the ripples are weakly coupled, and the eigenvalue problem can be solved perturbatively. At the leading order, the eigenvalue is equal to the phase speed $c_0$ of surface waves. At order $\epsilon$, the eigenvalue has a finite imaginary part, which implies growth. Miles (J. Fluid Mech., vol. 3, 1957, pp. 185–204) showed that the growth rate is proportional to the square modulus of the leading-order eigenfunction evaluated at the so-called critical level $z=z_c$, where the wind speed is equal to $c_0$ and the waves extract energy from the wind. Here, we construct uniform asymptotic approximations of the leading-order eigenfunction for long waves, which we use to calculate the growth rate as a function of $k$. In the strong wind limit, we find that the fastest growing wave is such that the aerodynamic pressure is in phase with the wave slope. The results are confirmed numerically. |
---|---|
ISSN: | 0022-1120 1469-7645 1469-7645 |
DOI: | 10.1017/jfm.2022.441 |