Loading…
A note on polydegree (n, 1) rational inner functions, slice matrices, and singularities
We analyze certain compositions of rational inner functions in the unit polydisk D d with polydegree ( n , 1), n ∈ N d - 1 , and isolated singularities in T d . Provided an irreducibility condition is met, such a composition is shown to be a rational inner function with singularities in precisely th...
Saved in:
Published in: | Archiv der Mathematik 2023-02, Vol.120 (2), p.171-181 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c351t-eff256eb9fb3d1ff61b381188786c0750b7bbc5edfbfefee5d175bec94102713 |
container_end_page | 181 |
container_issue | 2 |
container_start_page | 171 |
container_title | Archiv der Mathematik |
container_volume | 120 |
creator | Sola, Alan |
description | We analyze certain compositions of rational inner functions in the unit polydisk
D
d
with polydegree (
n
, 1),
n
∈
N
d
-
1
, and isolated singularities in
T
d
. Provided an irreducibility condition is met, such a composition is shown to be a rational inner function with singularities in precisely the same location as those of the initial function, and with quantitatively controlled properties. As an application, we answer a
d
-dimensional version of a question posed in Bickel et al. (Am J Math 144: 1115–1157, 2022) in the affirmative. |
doi_str_mv | 10.1007/s00013-022-01812-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_su_213916</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2771367396</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-eff256eb9fb3d1ff61b381188786c0750b7bbc5edfbfefee5d175bec94102713</originalsourceid><addsrcrecordid>eNp9kE1KBDEQhYMoOP5cwFXAjcK0ppLpTno5-A-CG5HZhU53ZYi0yZh0I97Gs3gyM47ozlVRVd97VD1CjoCdAWPyPDHGQBSM84KBAl6ILTKBGWeFqoXaJpO8F4VS9WKX7KX0nGmuZD0hizn1YUAaPF2F_r3DZUSkJ376-QGnNDaDC77pqfMeI7Wjb9eDNKWpdy3Sl2aIuea-8R1Nzi_HvolucJgOyI5t-oSHP3WfPF5fPV7cFvcPN3cX8_uiFSUMBVrLywpNbY3owNoKjFAASklVtUyWzEhj2hI7ayxaxLIDWRps6xkwLkHsk-nGNr3hajR6Fd1LE991aJy-dE9zHeJSp1FzEDVUGT_e4KsYXkdMg34OY8wfJs1ltqukqNcU31BtDClFtL-2wPQ6b73JW-e89XfeWmSR-Lkkw36J8c_6H9UXMHqEEA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2771367396</pqid></control><display><type>article</type><title>A note on polydegree (n, 1) rational inner functions, slice matrices, and singularities</title><source>Springer Nature</source><creator>Sola, Alan</creator><creatorcontrib>Sola, Alan</creatorcontrib><description>We analyze certain compositions of rational inner functions in the unit polydisk
D
d
with polydegree (
n
, 1),
n
∈
N
d
-
1
, and isolated singularities in
T
d
. Provided an irreducibility condition is met, such a composition is shown to be a rational inner function with singularities in precisely the same location as those of the initial function, and with quantitatively controlled properties. As an application, we answer a
d
-dimensional version of a question posed in Bickel et al. (Am J Math 144: 1115–1157, 2022) in the affirmative.</description><identifier>ISSN: 0003-889X</identifier><identifier>ISSN: 1420-8938</identifier><identifier>EISSN: 1420-8938</identifier><identifier>DOI: 10.1007/s00013-022-01812-3</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Composition ; Derivative integrability ; Mathematics ; Mathematics and Statistics ; Rational inner function ; Singularity (mathematics) ; Slice matrix</subject><ispartof>Archiv der Mathematik, 2023-02, Vol.120 (2), p.171-181</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c351t-eff256eb9fb3d1ff61b381188786c0750b7bbc5edfbfefee5d175bec94102713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-213916$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Sola, Alan</creatorcontrib><title>A note on polydegree (n, 1) rational inner functions, slice matrices, and singularities</title><title>Archiv der Mathematik</title><addtitle>Arch. Math</addtitle><description>We analyze certain compositions of rational inner functions in the unit polydisk
D
d
with polydegree (
n
, 1),
n
∈
N
d
-
1
, and isolated singularities in
T
d
. Provided an irreducibility condition is met, such a composition is shown to be a rational inner function with singularities in precisely the same location as those of the initial function, and with quantitatively controlled properties. As an application, we answer a
d
-dimensional version of a question posed in Bickel et al. (Am J Math 144: 1115–1157, 2022) in the affirmative.</description><subject>Composition</subject><subject>Derivative integrability</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Rational inner function</subject><subject>Singularity (mathematics)</subject><subject>Slice matrix</subject><issn>0003-889X</issn><issn>1420-8938</issn><issn>1420-8938</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kE1KBDEQhYMoOP5cwFXAjcK0ppLpTno5-A-CG5HZhU53ZYi0yZh0I97Gs3gyM47ozlVRVd97VD1CjoCdAWPyPDHGQBSM84KBAl6ILTKBGWeFqoXaJpO8F4VS9WKX7KX0nGmuZD0hizn1YUAaPF2F_r3DZUSkJ376-QGnNDaDC77pqfMeI7Wjb9eDNKWpdy3Sl2aIuea-8R1Nzi_HvolucJgOyI5t-oSHP3WfPF5fPV7cFvcPN3cX8_uiFSUMBVrLywpNbY3owNoKjFAASklVtUyWzEhj2hI7ayxaxLIDWRps6xkwLkHsk-nGNr3hajR6Fd1LE991aJy-dE9zHeJSp1FzEDVUGT_e4KsYXkdMg34OY8wfJs1ltqukqNcU31BtDClFtL-2wPQ6b73JW-e89XfeWmSR-Lkkw36J8c_6H9UXMHqEEA</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Sola, Alan</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ABAVF</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DG7</scope><scope>ZZAVC</scope></search><sort><creationdate>20230201</creationdate><title>A note on polydegree (n, 1) rational inner functions, slice matrices, and singularities</title><author>Sola, Alan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-eff256eb9fb3d1ff61b381188786c0750b7bbc5edfbfefee5d175bec94102713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Composition</topic><topic>Derivative integrability</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Rational inner function</topic><topic>Singularity (mathematics)</topic><topic>Slice matrix</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sola, Alan</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>SWEPUB Stockholms universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Stockholms universitet</collection><collection>SwePub Articles full text</collection><jtitle>Archiv der Mathematik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sola, Alan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A note on polydegree (n, 1) rational inner functions, slice matrices, and singularities</atitle><jtitle>Archiv der Mathematik</jtitle><stitle>Arch. Math</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>120</volume><issue>2</issue><spage>171</spage><epage>181</epage><pages>171-181</pages><issn>0003-889X</issn><issn>1420-8938</issn><eissn>1420-8938</eissn><abstract>We analyze certain compositions of rational inner functions in the unit polydisk
D
d
with polydegree (
n
, 1),
n
∈
N
d
-
1
, and isolated singularities in
T
d
. Provided an irreducibility condition is met, such a composition is shown to be a rational inner function with singularities in precisely the same location as those of the initial function, and with quantitatively controlled properties. As an application, we answer a
d
-dimensional version of a question posed in Bickel et al. (Am J Math 144: 1115–1157, 2022) in the affirmative.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00013-022-01812-3</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-889X |
ispartof | Archiv der Mathematik, 2023-02, Vol.120 (2), p.171-181 |
issn | 0003-889X 1420-8938 1420-8938 |
language | eng |
recordid | cdi_swepub_primary_oai_DiVA_org_su_213916 |
source | Springer Nature |
subjects | Composition Derivative integrability Mathematics Mathematics and Statistics Rational inner function Singularity (mathematics) Slice matrix |
title | A note on polydegree (n, 1) rational inner functions, slice matrices, and singularities |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A49%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20note%20on%20polydegree%20(n,%C2%A01)%20rational%20inner%20functions,%20slice%20matrices,%20and%20singularities&rft.jtitle=Archiv%20der%20Mathematik&rft.au=Sola,%20Alan&rft.date=2023-02-01&rft.volume=120&rft.issue=2&rft.spage=171&rft.epage=181&rft.pages=171-181&rft.issn=0003-889X&rft.eissn=1420-8938&rft_id=info:doi/10.1007/s00013-022-01812-3&rft_dat=%3Cproquest_swepu%3E2771367396%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c351t-eff256eb9fb3d1ff61b381188786c0750b7bbc5edfbfefee5d175bec94102713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2771367396&rft_id=info:pmid/&rfr_iscdi=true |