Loading…
Heavy-element production in a compact object merger observed by JWST
The mergers of binary compact objects such as neutron stars and black holes are of central interest to several areas of astrophysics, including as the progenitors of gamma-ray bursts (GRBs) 1 , sources of high-frequency gravitational waves (GWs) 2 and likely production sites for heavy-element nucleo...
Saved in:
Published in: | Nature (London) 2024-02, Vol.626 (8000), p.737-741 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The mergers of binary compact objects such as neutron stars and black holes are of central interest to several areas of astrophysics, including as the progenitors of gamma-ray bursts (GRBs)
1
, sources of high-frequency gravitational waves (GWs)
2
and likely production sites for heavy-element nucleosynthesis by means of rapid neutron capture (the
r
-process)
3
. Here we present observations of the exceptionally bright GRB 230307A. We show that GRB 230307A belongs to the class of long-duration GRBs associated with compact object mergers
4
–
6
and contains a kilonova similar to AT2017gfo, associated with the GW merger GW170817 (refs.
7
–
12
). We obtained James Webb Space Telescope (JWST) mid-infrared imaging and spectroscopy 29 and 61 days after the burst. The spectroscopy shows an emission line at 2.15 microns, which we interpret as tellurium (atomic mass
A
= 130) and a very red source, emitting most of its light in the mid-infrared owing to the production of lanthanides. These observations demonstrate that nucleosynthesis in GRBs can create
r
-process elements across a broad atomic mass range and play a central role in heavy-element nucleosynthesis across the Universe.
Observations from the JWST of the second brightest GRB ever detected, GRB 230307A, indicate that it belongs to the class of long-duration GRBs resulting from compact object mergers, with the decay of lanthanides powering the longlasting optical and infrared emission. |
---|---|
ISSN: | 0028-0836 1476-4687 1476-4687 |
DOI: | 10.1038/s41586-023-06759-1 |