Loading…
Comprehensive constraints on heavy sterile neutrinos from core-collapse supernovae
Sterile neutrinos with masses up to O ( 100 ) MeV can be copiously produced in a supernova (SN) core through the mixing with active neutrinos. In this regard, the SN 1987A detection of neutrino events has been used to put constraints on active-sterile neutrino mixing, exploiting the well-known SN co...
Saved in:
Published in: | Physical review. D 2024, Vol.109 (6), Article 063010 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Sterile neutrinos with masses up to O ( 100 ) MeV can be copiously produced in a supernova (SN) core through the mixing with active neutrinos. In this regard, the SN 1987A detection of neutrino events has been used to put constraints on active-sterile neutrino mixing, exploiting the well-known SN cooling argument. We refine the calculation of this limit including neutral current interactions with nucleons, which constitute the dominant channel for sterile neutrino production. We also include, for the first time, the charged current interactions between sterile neutrinos and muons, relevant for the production of sterile neutrinos mixed with muon neutrinos in the SN core. Using the recent modified luminosity criterion, we extend the bounds to the case where sterile states are trapped in the stellar core. Additionally, we study the decays of heavy sterile neutrinos, affecting the SN explosion energy and possibly producing a gamma-ray signal. We also illustrate the complementarity of our new bounds with cosmological bounds and laboratory searches. |
---|---|
ISSN: | 2470-0010 2470-0029 2470-0029 |
DOI: | 10.1103/PhysRevD.109.063010 |