Loading…
Facilitated introgression from domestic goat into Alpine ibex at immune loci
Hybridization can result in the transfer of adaptive genetic material from one species to another, known as adaptive introgression. Bottlenecked (and hence genetically depleted) species are expected to be particularly receptive to adaptive introgression, since introgression can introduce new or prev...
Saved in:
Published in: | Molecular ecology 2024-07, Vol.33 (14), p.e17429-n/a |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Hybridization can result in the transfer of adaptive genetic material from one species to another, known as adaptive introgression. Bottlenecked (and hence genetically depleted) species are expected to be particularly receptive to adaptive introgression, since introgression can introduce new or previously lost adaptive genetic variation. The Alpine ibex (Capra ibex), which recently recovered from near extinction, is known to hybridize with the domestic goat (Capra aegagrus hircus), and signals of introgression previously found at the major histocompatibility complex were suggested to potentially be adaptive. Here, we combine two ancient whole genomes of Alpine ibex with 29 modern Alpine ibex genomes and 31 genomes representing six related Capra species to investigate the genome‐wide patterns of introgression and confirm the potential relevance of immune loci. We identified low rates of admixture in modern Alpine ibex through various F statistics and screening for putative introgressed tracts. Further results based on demographic modelling were consistent with introgression to have occurred during the last 300 years, coinciding with the known species bottleneck, and that in each generation, 1–2 out of 100 Alpine ibex had a domestic goat parent. The putatively introgressed haplotypes were enriched at immune‐related genes, where the adaptive value of alternative alleles may give individuals with otherwise depleted genetic diversity a selective advantage. While interbreeding with domestic species is a prevalent issue in species conservation, in this specific case, it resulted in putative adaptive introgression. Our findings highlight the complex interplay between hybridization, adaptive evolution, and the potential risks and benefits associated with anthropogenic influences on wild species. |
---|---|
ISSN: | 0962-1083 1365-294X 1365-294X |
DOI: | 10.1111/mec.17429 |