Loading…
Novel UCP1 knockout models broaden our understanding of mammalian non‐shivering thermogenesis
In this issue of Acta Physiologica, Warfel et al. advance our knowledge on the physiological significance of brown adipose tissue (BAT) thermogenesis by creating a new uncoupling protein 1 (UCP1)-knockout rat model.1 In mammals, adaptive non-shivering thermogenesis (NST) evolved in BAT to protect hi...
Saved in:
Published in: | Acta Physiologica 2023-05, Vol.238 (1), p.e13956-n/a |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4306-8ed338694a1879b8bde4b23b48e0742499e6c3be7adf6cb96bf31dec86884c613 |
---|---|
cites | cdi_FETCH-LOGICAL-c4306-8ed338694a1879b8bde4b23b48e0742499e6c3be7adf6cb96bf31dec86884c613 |
container_end_page | n/a |
container_issue | 1 |
container_start_page | e13956 |
container_title | Acta Physiologica |
container_volume | 238 |
creator | Jastroch, Martin |
description | In this issue of Acta Physiologica, Warfel et al. advance our knowledge on the physiological significance of brown adipose tissue (BAT) thermogenesis by creating a new uncoupling protein 1 (UCP1)-knockout rat model.1
In mammals, adaptive non-shivering thermogenesis (NST) evolved in BAT to protect high body temperatures of small and newborn species in the cold and to accelerate arousal from hypothermic states, such as torpor and hibernation.2 BAT is specialized for heat production by virtue of rich vascularization, capacity for rapid fatty acid mobilization of multilocular lipid droplets and high mitochondrial density. In BAT mitochondria, a small membrane protein named UCP1 is pivotal for heat production by promoting mitochondrial proton leak.3 The increase of proton leak uncouples mitochondrial respiration from ATP production and accelerates oxidation of energy substrates. UCP1 is almost exclusively expressed in thermogenic adipocytes, which include brown and beige adipocytes, the latter displaying intermediate characteristics between white fat-storing and brown fat-burning cells. BAT fades with age in larger mammals, but residual amounts in adult humans are in the crosshairs as a therapeutic target to combat cardio-metabolic diseases, given BAT's potential to control systemic glucose and lipid metabolism. |
doi_str_mv | 10.1111/apha.13956 |
format | article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_su_234688</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2783497978</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4306-8ed338694a1879b8bde4b23b48e0742499e6c3be7adf6cb96bf31dec86884c613</originalsourceid><addsrcrecordid>eNp90c9OHCEcB3DS2FRjvfQBGhIvTeNaGBCY42brnyZGPdReCQy_2UVnYIUdjTcfwWf0SWQ7dg89OAeGhA_fAF-EvlBySMv3wywX5pCy-kh8QDtUcjWhkoqtzZyobbSX8w0hhFaU8ar6hLaZUEISKXaQvoj30OHr2RXFtyE2t3FY4T466DK2KRoHAcch4SE4SHllgvNhjmOLe9P3pvMm4BDDy9NzXvh7SOvF1QJSH-cQIPv8GX1sTZdh7-2_i65Pjn_Pzibnl6e_ZtPzScMZERMFjjElam6okrVV1gG3FbNcAZG84nUNomEWpHGtaGwtbMuog0YJpXgjKNtFB2NufoDlYPUy-d6kRx2N1z_9n6mOaa7zoCvGy5bCv418meLdAHmle58b6DoTIA5ZV1IxXstarun-f_SmPEgol9GVIkesDEoW9X1UTYo5J2g3J6BEr4vS66L036IK_voWOdge3Ib-q6UAOoIH38HjO1F6enU2HUNfAZBnntw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2805328087</pqid></control><display><type>article</type><title>Novel UCP1 knockout models broaden our understanding of mammalian non‐shivering thermogenesis</title><source>Wiley</source><source>SPORTDiscus with Full Text</source><creator>Jastroch, Martin</creator><creatorcontrib>Jastroch, Martin</creatorcontrib><description>In this issue of Acta Physiologica, Warfel et al. advance our knowledge on the physiological significance of brown adipose tissue (BAT) thermogenesis by creating a new uncoupling protein 1 (UCP1)-knockout rat model.1
In mammals, adaptive non-shivering thermogenesis (NST) evolved in BAT to protect high body temperatures of small and newborn species in the cold and to accelerate arousal from hypothermic states, such as torpor and hibernation.2 BAT is specialized for heat production by virtue of rich vascularization, capacity for rapid fatty acid mobilization of multilocular lipid droplets and high mitochondrial density. In BAT mitochondria, a small membrane protein named UCP1 is pivotal for heat production by promoting mitochondrial proton leak.3 The increase of proton leak uncouples mitochondrial respiration from ATP production and accelerates oxidation of energy substrates. UCP1 is almost exclusively expressed in thermogenic adipocytes, which include brown and beige adipocytes, the latter displaying intermediate characteristics between white fat-storing and brown fat-burning cells. BAT fades with age in larger mammals, but residual amounts in adult humans are in the crosshairs as a therapeutic target to combat cardio-metabolic diseases, given BAT's potential to control systemic glucose and lipid metabolism.</description><identifier>ISSN: 1748-1708</identifier><identifier>ISSN: 1748-1716</identifier><identifier>EISSN: 1748-1716</identifier><identifier>DOI: 10.1111/apha.13956</identifier><identifier>PMID: 36867076</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Adipose Tissue, Brown ; Animals ; Mammals ; Mice ; Mice, Knockout ; Mitochondrial Proteins ; Thermogenesis ; Uncoupling Protein 1</subject><ispartof>Acta Physiologica, 2023-05, Vol.238 (1), p.e13956-n/a</ispartof><rights>2023 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.</rights><rights>Copyright © 2023 Scandinavian Physiological Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4306-8ed338694a1879b8bde4b23b48e0742499e6c3be7adf6cb96bf31dec86884c613</citedby><cites>FETCH-LOGICAL-c4306-8ed338694a1879b8bde4b23b48e0742499e6c3be7adf6cb96bf31dec86884c613</cites><orcidid>0000-0003-0358-3865</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,778,782,883,27907,27908</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36867076$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-234688$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Jastroch, Martin</creatorcontrib><title>Novel UCP1 knockout models broaden our understanding of mammalian non‐shivering thermogenesis</title><title>Acta Physiologica</title><addtitle>Acta Physiol (Oxf)</addtitle><description>In this issue of Acta Physiologica, Warfel et al. advance our knowledge on the physiological significance of brown adipose tissue (BAT) thermogenesis by creating a new uncoupling protein 1 (UCP1)-knockout rat model.1
In mammals, adaptive non-shivering thermogenesis (NST) evolved in BAT to protect high body temperatures of small and newborn species in the cold and to accelerate arousal from hypothermic states, such as torpor and hibernation.2 BAT is specialized for heat production by virtue of rich vascularization, capacity for rapid fatty acid mobilization of multilocular lipid droplets and high mitochondrial density. In BAT mitochondria, a small membrane protein named UCP1 is pivotal for heat production by promoting mitochondrial proton leak.3 The increase of proton leak uncouples mitochondrial respiration from ATP production and accelerates oxidation of energy substrates. UCP1 is almost exclusively expressed in thermogenic adipocytes, which include brown and beige adipocytes, the latter displaying intermediate characteristics between white fat-storing and brown fat-burning cells. BAT fades with age in larger mammals, but residual amounts in adult humans are in the crosshairs as a therapeutic target to combat cardio-metabolic diseases, given BAT's potential to control systemic glucose and lipid metabolism.</description><subject>Adipose Tissue, Brown</subject><subject>Animals</subject><subject>Mammals</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Mitochondrial Proteins</subject><subject>Thermogenesis</subject><subject>Uncoupling Protein 1</subject><issn>1748-1708</issn><issn>1748-1716</issn><issn>1748-1716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp90c9OHCEcB3DS2FRjvfQBGhIvTeNaGBCY42brnyZGPdReCQy_2UVnYIUdjTcfwWf0SWQ7dg89OAeGhA_fAF-EvlBySMv3wywX5pCy-kh8QDtUcjWhkoqtzZyobbSX8w0hhFaU8ar6hLaZUEISKXaQvoj30OHr2RXFtyE2t3FY4T466DK2KRoHAcch4SE4SHllgvNhjmOLe9P3pvMm4BDDy9NzXvh7SOvF1QJSH-cQIPv8GX1sTZdh7-2_i65Pjn_Pzibnl6e_ZtPzScMZERMFjjElam6okrVV1gG3FbNcAZG84nUNomEWpHGtaGwtbMuog0YJpXgjKNtFB2NufoDlYPUy-d6kRx2N1z_9n6mOaa7zoCvGy5bCv418meLdAHmle58b6DoTIA5ZV1IxXstarun-f_SmPEgol9GVIkesDEoW9X1UTYo5J2g3J6BEr4vS66L036IK_voWOdge3Ib-q6UAOoIH38HjO1F6enU2HUNfAZBnntw</recordid><startdate>202305</startdate><enddate>202305</enddate><creator>Jastroch, Martin</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7TS</scope><scope>7X8</scope><scope>ABAVF</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DG7</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0003-0358-3865</orcidid></search><sort><creationdate>202305</creationdate><title>Novel UCP1 knockout models broaden our understanding of mammalian non‐shivering thermogenesis</title><author>Jastroch, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4306-8ed338694a1879b8bde4b23b48e0742499e6c3be7adf6cb96bf31dec86884c613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Adipose Tissue, Brown</topic><topic>Animals</topic><topic>Mammals</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Mitochondrial Proteins</topic><topic>Thermogenesis</topic><topic>Uncoupling Protein 1</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jastroch, Martin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>MEDLINE - Academic</collection><collection>SWEPUB Stockholms universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Stockholms universitet</collection><collection>SwePub Articles full text</collection><jtitle>Acta Physiologica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jastroch, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel UCP1 knockout models broaden our understanding of mammalian non‐shivering thermogenesis</atitle><jtitle>Acta Physiologica</jtitle><addtitle>Acta Physiol (Oxf)</addtitle><date>2023-05</date><risdate>2023</risdate><volume>238</volume><issue>1</issue><spage>e13956</spage><epage>n/a</epage><pages>e13956-n/a</pages><issn>1748-1708</issn><issn>1748-1716</issn><eissn>1748-1716</eissn><abstract>In this issue of Acta Physiologica, Warfel et al. advance our knowledge on the physiological significance of brown adipose tissue (BAT) thermogenesis by creating a new uncoupling protein 1 (UCP1)-knockout rat model.1
In mammals, adaptive non-shivering thermogenesis (NST) evolved in BAT to protect high body temperatures of small and newborn species in the cold and to accelerate arousal from hypothermic states, such as torpor and hibernation.2 BAT is specialized for heat production by virtue of rich vascularization, capacity for rapid fatty acid mobilization of multilocular lipid droplets and high mitochondrial density. In BAT mitochondria, a small membrane protein named UCP1 is pivotal for heat production by promoting mitochondrial proton leak.3 The increase of proton leak uncouples mitochondrial respiration from ATP production and accelerates oxidation of energy substrates. UCP1 is almost exclusively expressed in thermogenic adipocytes, which include brown and beige adipocytes, the latter displaying intermediate characteristics between white fat-storing and brown fat-burning cells. BAT fades with age in larger mammals, but residual amounts in adult humans are in the crosshairs as a therapeutic target to combat cardio-metabolic diseases, given BAT's potential to control systemic glucose and lipid metabolism.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>36867076</pmid><doi>10.1111/apha.13956</doi><tpages>2</tpages><orcidid>https://orcid.org/0000-0003-0358-3865</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-1708 |
ispartof | Acta Physiologica, 2023-05, Vol.238 (1), p.e13956-n/a |
issn | 1748-1708 1748-1716 1748-1716 |
language | eng |
recordid | cdi_swepub_primary_oai_DiVA_org_su_234688 |
source | Wiley; SPORTDiscus with Full Text |
subjects | Adipose Tissue, Brown Animals Mammals Mice Mice, Knockout Mitochondrial Proteins Thermogenesis Uncoupling Protein 1 |
title | Novel UCP1 knockout models broaden our understanding of mammalian non‐shivering thermogenesis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T10%3A21%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20UCP1%20knockout%20models%20broaden%20our%20understanding%20of%20mammalian%20non%E2%80%90shivering%20thermogenesis&rft.jtitle=Acta%20Physiologica&rft.au=Jastroch,%20Martin&rft.date=2023-05&rft.volume=238&rft.issue=1&rft.spage=e13956&rft.epage=n/a&rft.pages=e13956-n/a&rft.issn=1748-1708&rft.eissn=1748-1716&rft_id=info:doi/10.1111/apha.13956&rft_dat=%3Cproquest_swepu%3E2783497978%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4306-8ed338694a1879b8bde4b23b48e0742499e6c3be7adf6cb96bf31dec86884c613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2805328087&rft_id=info:pmid/36867076&rfr_iscdi=true |