Loading…
Novel insect orcokinins: Characterization and neuronal distribution in the brains of selected dicondylian insects
Orcokinins are a family of myotropic neuropeptides identified in various decapod crustaceans and recently in a cockroach. Their presence in the crustacean nervous system and hemolymph suggests that they act as hormones and as locally acting neuromodulators. To provide further evidence for the existe...
Saved in:
Published in: | Journal of comparative neurology (1911) 2005-09, Vol.490 (1), p.57-71 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Orcokinins are a family of myotropic neuropeptides identified in various decapod crustaceans and recently in a cockroach. Their presence in the crustacean nervous system and hemolymph suggests that they act as hormones and as locally acting neuromodulators. To provide further evidence for the existence of orcokinins in insects, we identified a novel orcokinin‐related peptide in the locust Schistocerca gregaria and used an antiserum against Asn13‐orcokinin for immunostaining in the brains of selected dicondylian insects, including a silverfish, three polyneopteran species (a cockroach and two locusts), and three endopterygote species (a moth, a bee, and a fly). As analyzed by MALDI‐TOF spectrometry and nanoelectrospray Q‐TOF, the locust orcokinin is a novel tetradecapeptide with striking sequence similarity to crustacean orcokinins. Orcokinin immunostaining was widespread and occurred in similar patterns in the brain of the silverfish and the polyneopteran species. Prominent immunostaining was detected in the optic lobe, especially in the medulla and in the accessory medulla, in local interneurons of the antennal lobe, and in extrinsic and intrinsic mushroom‐body neurons. All parts of the central complex and many other areas of the brains were densely stained. In the silverfish, the cockroach, and the locusts, processes in the corpora cardiaca showed orcokinin immunoreactivity, suggesting that orcokinins also serve a hormonal role. In contrast to the case in polyneopteran species, immunostaining was completely lacking in the brains of the honeybee, fruitfly, and sphinx moth. This indicates that orcokinins either are modified considerably or may be completely absent in the brains of endopterygote insects. J. Comp. Neurol. 490:57–71, 2005. © 2005 Wiley‐Liss, Inc. |
---|---|
ISSN: | 0021-9967 1096-9861 1096-9861 |
DOI: | 10.1002/cne.20650 |