Loading…

Spatial precipitation frequency of an extreme event: the July 2006 mesoscale convective complexes and floods in southeastern Arizona

An extreme, multiday rainfall event over southeastern Arizona during 27–31 July 2006 caused record flooding and a historically unprecedented number of slope failures and debris flows in the Santa Catalina Mountains north of Tucson. An unusual synoptic weather pattern induced repeated nocturnal mesos...

Full description

Saved in:
Bibliographic Details
Published in:Water resources research 2009, Vol.45 (W07419)
Main Authors: Griffiths, PG, Magirl, CS, Webb, RH, Pytlak, E, Troch, PA, Lyon, Steve
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An extreme, multiday rainfall event over southeastern Arizona during 27–31 July 2006 caused record flooding and a historically unprecedented number of slope failures and debris flows in the Santa Catalina Mountains north of Tucson. An unusual synoptic weather pattern induced repeated nocturnal mesoscale convective systems over southeastern Arizona for five continuous days, generating multiday rainfall totals up to 360 mm. Analysis of point rainfall and weather radar data yielded storm totals for the southern Santa Catalina Mountains at 754 grid cells approximately 1 km 1 km in size. Precipitation intensity for the 31 July storms was not unusual for typical monsoonal precipitation in this region (recurrence interval (RI) < 1 year), but multiday rainfall where slope failures occurred had RI > 50 years and individual grid cells had RI exceeding 1000 years. The 31 July storms caused the watersheds to be essentially saturated following 4 days of rainfall.
ISSN:1944-7973
0043-1397
DOI:10.1029/2008WR007380