Loading…
Aeolian dust in the Talos Dome ice core (East Antarctica, Pacific/Ross Sea sector): Victoria Land versus remote sources over the last two climate cycles
A new ice core (TALDICE) drilled at Talos Dome (East Antarctica, Ross Sea sector) preserves a ca. 250 ka long record of palaeoclimate and atmospheric history. We investigate dust variability and provenance at the site during glacial periods and the Holocene through the Sr–Nd isotopic composition of...
Saved in:
Published in: | Journal of quaternary science 2010-12, Vol.25 (8), p.1327-1337 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A new ice core (TALDICE) drilled at Talos Dome (East Antarctica, Ross Sea sector) preserves a ca. 250 ka long record of palaeoclimate and atmospheric history. We investigate dust variability and provenance at the site during glacial periods and the Holocene through the Sr–Nd isotopic composition of ice core dust and potential source areas (PSA). We provide new isotopic data on dust sources from Victoria Land such as regoliths, glacial drifts, aeolian sands and beach deposits. Some of these sources are located at high altitude and are known to have been ice free throughout the Pleistocene. The major features of the TALDICE dust record are very similar to those from central East Antarctica. During glacial times, South America was the dominant dust supplier for Talos Dome as well as for the entire East Antarctic plateau. Conversely, during the Holocene the principal input of mineral dust at Talos Dome probably derives from proximal sources which are the ice‐free areas of northern Victoria Land, located at similar altitude with respect to the drilling site. Atmospheric mobilisation of dust from these neighbouring areas and transport inland to Talos Dome can be ultimately associated with advection of maritime air masses from the Pacific/Ross Sea region. Copyright © 2010 John Wiley & Sons, Ltd. |
---|---|
ISSN: | 0267-8179 1099-1417 1099-1417 |
DOI: | 10.1002/jqs.1418 |