Loading…
Identified peptidergic neurons in the Drosophila brain regulate insulin-producing cells, stress responses and metabolism by coexpressed short neuropeptide F and corazonin
Insulin/IGF-like signaling regulates the development, growth, fecundity, metabolic homeostasis, stress resistance and lifespan in worms, flies and mammals. Eight insulin-like peptides (DILP1-8) are found in Drosophila . Three of these (DILP2, 3 and 5) are produced by a set of median neurosecretory c...
Saved in:
Published in: | Cellular and molecular life sciences : CMLS 2012-12, Vol.69 (23), p.4051-4066 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c596t-431d8087b9854632d6c24c8ae536819f0fa0400652123e5f48e73be4c67c88b03 |
---|---|
cites | cdi_FETCH-LOGICAL-c596t-431d8087b9854632d6c24c8ae536819f0fa0400652123e5f48e73be4c67c88b03 |
container_end_page | 4066 |
container_issue | 23 |
container_start_page | 4051 |
container_title | Cellular and molecular life sciences : CMLS |
container_volume | 69 |
creator | Kapan, Neval Lushchak, Oleh V. Luo, Jiangnan Nässel, Dick R. |
description | Insulin/IGF-like signaling regulates the development, growth, fecundity, metabolic homeostasis, stress resistance and lifespan in worms, flies and mammals. Eight insulin-like peptides (DILP1-8) are found in
Drosophila
. Three of these (DILP2, 3 and 5) are produced by a set of median neurosecretory cells (insulin-producing cells, IPCs) in the brain. Activity in the IPCs of adult flies is regulated by glucose and several neurotransmitters and neuropeptides. One of these, short neuropeptide F (sNPF), regulates food intake, growth and
Dilp
transcript levels in IPCs via the sNPF receptor (sNPFR1) expressed on IPCs. Here we identify a set of brain neurons that utilizes sNPF to activate the IPCs. These sNPF-expressing neurons (dorsal lateral peptidergic neurons, DLPs) also produce the neuropeptide corazonin (CRZ) and have axon terminations impinging on IPCs. Knockdown of either sNPF or CRZ in DLPs extends survival in flies exposed to starvation and alters carbohydrate and lipid metabolism. Expression of sNPF in DLPs in the sNPF mutant background is sufficient to rescue wild-type metabolism and response to starvation. Since CRZ receptor RNAi in IPCs affects starvation resistance and metabolism, similar to peptide knockdown in DLPs, it is likely that also CRZ targets the IPCs. Knockdown of sNPF, but not CRZ in DLPs decreases transcription of
Dilp2
and
5
in the brain, suggesting different mechanisms of action on IPCs of the two co-released peptides. Our findings indicate that sNPF and CRZ co-released from a small set of neurons regulate IPCs, stress resistance and metabolism in adult
Drosophila
. |
doi_str_mv | 10.1007/s00018-012-1097-z |
format | article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_su_80362</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1702650587</sourcerecordid><originalsourceid>FETCH-LOGICAL-c596t-431d8087b9854632d6c24c8ae536819f0fa0400652123e5f48e73be4c67c88b03</originalsourceid><addsrcrecordid>eNqFksFuFSEUhidGY2v1AdwYEjcmOgoMMMyqaVqrTZq4UeOOMMyZuTRzYYQZtfeRfErP9V6b1sTIBgLf-Q_8_EXxlNHXjNL6TaaUMl1SxktGm7rc3CsOmeC0bGjN7u_XSvMvB8WjnK8Qlpqrh8UB55prreRh8fOigzD73kNHJphm30EavCMBlhRDJj6QeQXkLMUcp5UfLWmTxc0EwzLaGRDIy-hDOaXYLc6HgTgYx_yK5DlBzgjmCYUgExs6sobZtnH0eU3aa-Ii_Ji2FDbPq5jmXdv9Pcj57xIXk93E4MPj4kFvxwxP9vNR8en87cfT9-Xlh3cXpyeXpZONmktRsU5TXbeNlkJVvFOOC6ctyEpp1vS0t1RQqiRnvALZCw111YJwqnZat7Q6Kl7udPN3mJbWTMmvbbo20Xpz5j-fmJgGkxejaaU40sc7GtE1dA7dTHa8U3T3JPiVGeI3w3AIJSQqvNgrpPh1gTybtc9bE22AuGTDasqVpFLX_0cFayp0QTaIPv8LvYpLCmgcdhYYF1rVCim2oxx-cE7Q31ycUbPNmNllzGDGzDZjZoM1z26_-KbiT6gQ4HsD8SgMkG61_qfqLyVj4UU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1141090376</pqid></control><display><type>article</type><title>Identified peptidergic neurons in the Drosophila brain regulate insulin-producing cells, stress responses and metabolism by coexpressed short neuropeptide F and corazonin</title><source>PubMed (Medline)</source><source>Springer Nature</source><creator>Kapan, Neval ; Lushchak, Oleh V. ; Luo, Jiangnan ; Nässel, Dick R.</creator><creatorcontrib>Kapan, Neval ; Lushchak, Oleh V. ; Luo, Jiangnan ; Nässel, Dick R.</creatorcontrib><description>Insulin/IGF-like signaling regulates the development, growth, fecundity, metabolic homeostasis, stress resistance and lifespan in worms, flies and mammals. Eight insulin-like peptides (DILP1-8) are found in
Drosophila
. Three of these (DILP2, 3 and 5) are produced by a set of median neurosecretory cells (insulin-producing cells, IPCs) in the brain. Activity in the IPCs of adult flies is regulated by glucose and several neurotransmitters and neuropeptides. One of these, short neuropeptide F (sNPF), regulates food intake, growth and
Dilp
transcript levels in IPCs via the sNPF receptor (sNPFR1) expressed on IPCs. Here we identify a set of brain neurons that utilizes sNPF to activate the IPCs. These sNPF-expressing neurons (dorsal lateral peptidergic neurons, DLPs) also produce the neuropeptide corazonin (CRZ) and have axon terminations impinging on IPCs. Knockdown of either sNPF or CRZ in DLPs extends survival in flies exposed to starvation and alters carbohydrate and lipid metabolism. Expression of sNPF in DLPs in the sNPF mutant background is sufficient to rescue wild-type metabolism and response to starvation. Since CRZ receptor RNAi in IPCs affects starvation resistance and metabolism, similar to peptide knockdown in DLPs, it is likely that also CRZ targets the IPCs. Knockdown of sNPF, but not CRZ in DLPs decreases transcription of
Dilp2
and
5
in the brain, suggesting different mechanisms of action on IPCs of the two co-released peptides. Our findings indicate that sNPF and CRZ co-released from a small set of neurons regulate IPCs, stress resistance and metabolism in adult
Drosophila
.</description><identifier>ISSN: 1420-682X</identifier><identifier>ISSN: 1420-9071</identifier><identifier>EISSN: 1420-9071</identifier><identifier>DOI: 10.1007/s00018-012-1097-z</identifier><identifier>PMID: 22828865</identifier><language>eng</language><publisher>Basel: SP Birkhäuser Verlag Basel</publisher><subject>Animals ; Animals, Genetically Modified ; Biochemistry ; Biomedical and Life Sciences ; Biomedicine ; Brain - cytology ; Brain - metabolism ; Carbohydrates - blood ; Cell Biology ; Cellular biology ; Drosophila ; Drosophila melanogaster ; Drosophila melanogaster - genetics ; Drosophila melanogaster - metabolism ; Drosophila Proteins - genetics ; Drosophila Proteins - metabolism ; Fecundity ; Green Fluorescent Proteins - genetics ; Green Fluorescent Proteins - metabolism ; Hemolymph - metabolism ; Hormones ; Insulin - biosynthesis ; Insulin signaling ; Insulin-like growth factors ; Insulins - genetics ; Insulins - metabolism ; Life Sciences ; Lipids - blood ; Microscopy, Confocal ; Neurons - metabolism ; Neuropeptides ; Neuropeptides - genetics ; Neuropeptides - metabolism ; Neurosecretory Systems - cytology ; Neurosecretory Systems - metabolism ; Peptide hormones ; Peptides ; Receptors, Neuropeptide - genetics ; Receptors, Neuropeptide - metabolism ; Research Article ; Reverse Transcriptase Polymerase Chain Reaction ; RNA Interference ; Starvation ; Stress response ; Stress, Physiological</subject><ispartof>Cellular and molecular life sciences : CMLS, 2012-12, Vol.69 (23), p.4051-4066</ispartof><rights>Springer Basel AG 2012</rights><rights>Springer Basel 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c596t-431d8087b9854632d6c24c8ae536819f0fa0400652123e5f48e73be4c67c88b03</citedby><cites>FETCH-LOGICAL-c596t-431d8087b9854632d6c24c8ae536819f0fa0400652123e5f48e73be4c67c88b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11114645/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11114645/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22828865$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-80362$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Kapan, Neval</creatorcontrib><creatorcontrib>Lushchak, Oleh V.</creatorcontrib><creatorcontrib>Luo, Jiangnan</creatorcontrib><creatorcontrib>Nässel, Dick R.</creatorcontrib><title>Identified peptidergic neurons in the Drosophila brain regulate insulin-producing cells, stress responses and metabolism by coexpressed short neuropeptide F and corazonin</title><title>Cellular and molecular life sciences : CMLS</title><addtitle>Cell. Mol. Life Sci</addtitle><addtitle>Cell Mol Life Sci</addtitle><description>Insulin/IGF-like signaling regulates the development, growth, fecundity, metabolic homeostasis, stress resistance and lifespan in worms, flies and mammals. Eight insulin-like peptides (DILP1-8) are found in
Drosophila
. Three of these (DILP2, 3 and 5) are produced by a set of median neurosecretory cells (insulin-producing cells, IPCs) in the brain. Activity in the IPCs of adult flies is regulated by glucose and several neurotransmitters and neuropeptides. One of these, short neuropeptide F (sNPF), regulates food intake, growth and
Dilp
transcript levels in IPCs via the sNPF receptor (sNPFR1) expressed on IPCs. Here we identify a set of brain neurons that utilizes sNPF to activate the IPCs. These sNPF-expressing neurons (dorsal lateral peptidergic neurons, DLPs) also produce the neuropeptide corazonin (CRZ) and have axon terminations impinging on IPCs. Knockdown of either sNPF or CRZ in DLPs extends survival in flies exposed to starvation and alters carbohydrate and lipid metabolism. Expression of sNPF in DLPs in the sNPF mutant background is sufficient to rescue wild-type metabolism and response to starvation. Since CRZ receptor RNAi in IPCs affects starvation resistance and metabolism, similar to peptide knockdown in DLPs, it is likely that also CRZ targets the IPCs. Knockdown of sNPF, but not CRZ in DLPs decreases transcription of
Dilp2
and
5
in the brain, suggesting different mechanisms of action on IPCs of the two co-released peptides. Our findings indicate that sNPF and CRZ co-released from a small set of neurons regulate IPCs, stress resistance and metabolism in adult
Drosophila
.</description><subject>Animals</subject><subject>Animals, Genetically Modified</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Brain - cytology</subject><subject>Brain - metabolism</subject><subject>Carbohydrates - blood</subject><subject>Cell Biology</subject><subject>Cellular biology</subject><subject>Drosophila</subject><subject>Drosophila melanogaster</subject><subject>Drosophila melanogaster - genetics</subject><subject>Drosophila melanogaster - metabolism</subject><subject>Drosophila Proteins - genetics</subject><subject>Drosophila Proteins - metabolism</subject><subject>Fecundity</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Hemolymph - metabolism</subject><subject>Hormones</subject><subject>Insulin - biosynthesis</subject><subject>Insulin signaling</subject><subject>Insulin-like growth factors</subject><subject>Insulins - genetics</subject><subject>Insulins - metabolism</subject><subject>Life Sciences</subject><subject>Lipids - blood</subject><subject>Microscopy, Confocal</subject><subject>Neurons - metabolism</subject><subject>Neuropeptides</subject><subject>Neuropeptides - genetics</subject><subject>Neuropeptides - metabolism</subject><subject>Neurosecretory Systems - cytology</subject><subject>Neurosecretory Systems - metabolism</subject><subject>Peptide hormones</subject><subject>Peptides</subject><subject>Receptors, Neuropeptide - genetics</subject><subject>Receptors, Neuropeptide - metabolism</subject><subject>Research Article</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>RNA Interference</subject><subject>Starvation</subject><subject>Stress response</subject><subject>Stress, Physiological</subject><issn>1420-682X</issn><issn>1420-9071</issn><issn>1420-9071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFksFuFSEUhidGY2v1AdwYEjcmOgoMMMyqaVqrTZq4UeOOMMyZuTRzYYQZtfeRfErP9V6b1sTIBgLf-Q_8_EXxlNHXjNL6TaaUMl1SxktGm7rc3CsOmeC0bGjN7u_XSvMvB8WjnK8Qlpqrh8UB55prreRh8fOigzD73kNHJphm30EavCMBlhRDJj6QeQXkLMUcp5UfLWmTxc0EwzLaGRDIy-hDOaXYLc6HgTgYx_yK5DlBzgjmCYUgExs6sobZtnH0eU3aa-Ii_Ji2FDbPq5jmXdv9Pcj57xIXk93E4MPj4kFvxwxP9vNR8en87cfT9-Xlh3cXpyeXpZONmktRsU5TXbeNlkJVvFOOC6ctyEpp1vS0t1RQqiRnvALZCw111YJwqnZat7Q6Kl7udPN3mJbWTMmvbbo20Xpz5j-fmJgGkxejaaU40sc7GtE1dA7dTHa8U3T3JPiVGeI3w3AIJSQqvNgrpPh1gTybtc9bE22AuGTDasqVpFLX_0cFayp0QTaIPv8LvYpLCmgcdhYYF1rVCim2oxx-cE7Q31ycUbPNmNllzGDGzDZjZoM1z26_-KbiT6gQ4HsD8SgMkG61_qfqLyVj4UU</recordid><startdate>20121201</startdate><enddate>20121201</enddate><creator>Kapan, Neval</creator><creator>Lushchak, Oleh V.</creator><creator>Luo, Jiangnan</creator><creator>Nässel, Dick R.</creator><general>SP Birkhäuser Verlag Basel</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DG7</scope></search><sort><creationdate>20121201</creationdate><title>Identified peptidergic neurons in the Drosophila brain regulate insulin-producing cells, stress responses and metabolism by coexpressed short neuropeptide F and corazonin</title><author>Kapan, Neval ; Lushchak, Oleh V. ; Luo, Jiangnan ; Nässel, Dick R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c596t-431d8087b9854632d6c24c8ae536819f0fa0400652123e5f48e73be4c67c88b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Animals, Genetically Modified</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Brain - cytology</topic><topic>Brain - metabolism</topic><topic>Carbohydrates - blood</topic><topic>Cell Biology</topic><topic>Cellular biology</topic><topic>Drosophila</topic><topic>Drosophila melanogaster</topic><topic>Drosophila melanogaster - genetics</topic><topic>Drosophila melanogaster - metabolism</topic><topic>Drosophila Proteins - genetics</topic><topic>Drosophila Proteins - metabolism</topic><topic>Fecundity</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Hemolymph - metabolism</topic><topic>Hormones</topic><topic>Insulin - biosynthesis</topic><topic>Insulin signaling</topic><topic>Insulin-like growth factors</topic><topic>Insulins - genetics</topic><topic>Insulins - metabolism</topic><topic>Life Sciences</topic><topic>Lipids - blood</topic><topic>Microscopy, Confocal</topic><topic>Neurons - metabolism</topic><topic>Neuropeptides</topic><topic>Neuropeptides - genetics</topic><topic>Neuropeptides - metabolism</topic><topic>Neurosecretory Systems - cytology</topic><topic>Neurosecretory Systems - metabolism</topic><topic>Peptide hormones</topic><topic>Peptides</topic><topic>Receptors, Neuropeptide - genetics</topic><topic>Receptors, Neuropeptide - metabolism</topic><topic>Research Article</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>RNA Interference</topic><topic>Starvation</topic><topic>Stress response</topic><topic>Stress, Physiological</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kapan, Neval</creatorcontrib><creatorcontrib>Lushchak, Oleh V.</creatorcontrib><creatorcontrib>Luo, Jiangnan</creatorcontrib><creatorcontrib>Nässel, Dick R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Proquest Health & Medical Complete</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest research library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Stockholms universitet</collection><jtitle>Cellular and molecular life sciences : CMLS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kapan, Neval</au><au>Lushchak, Oleh V.</au><au>Luo, Jiangnan</au><au>Nässel, Dick R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identified peptidergic neurons in the Drosophila brain regulate insulin-producing cells, stress responses and metabolism by coexpressed short neuropeptide F and corazonin</atitle><jtitle>Cellular and molecular life sciences : CMLS</jtitle><stitle>Cell. Mol. Life Sci</stitle><addtitle>Cell Mol Life Sci</addtitle><date>2012-12-01</date><risdate>2012</risdate><volume>69</volume><issue>23</issue><spage>4051</spage><epage>4066</epage><pages>4051-4066</pages><issn>1420-682X</issn><issn>1420-9071</issn><eissn>1420-9071</eissn><abstract>Insulin/IGF-like signaling regulates the development, growth, fecundity, metabolic homeostasis, stress resistance and lifespan in worms, flies and mammals. Eight insulin-like peptides (DILP1-8) are found in
Drosophila
. Three of these (DILP2, 3 and 5) are produced by a set of median neurosecretory cells (insulin-producing cells, IPCs) in the brain. Activity in the IPCs of adult flies is regulated by glucose and several neurotransmitters and neuropeptides. One of these, short neuropeptide F (sNPF), regulates food intake, growth and
Dilp
transcript levels in IPCs via the sNPF receptor (sNPFR1) expressed on IPCs. Here we identify a set of brain neurons that utilizes sNPF to activate the IPCs. These sNPF-expressing neurons (dorsal lateral peptidergic neurons, DLPs) also produce the neuropeptide corazonin (CRZ) and have axon terminations impinging on IPCs. Knockdown of either sNPF or CRZ in DLPs extends survival in flies exposed to starvation and alters carbohydrate and lipid metabolism. Expression of sNPF in DLPs in the sNPF mutant background is sufficient to rescue wild-type metabolism and response to starvation. Since CRZ receptor RNAi in IPCs affects starvation resistance and metabolism, similar to peptide knockdown in DLPs, it is likely that also CRZ targets the IPCs. Knockdown of sNPF, but not CRZ in DLPs decreases transcription of
Dilp2
and
5
in the brain, suggesting different mechanisms of action on IPCs of the two co-released peptides. Our findings indicate that sNPF and CRZ co-released from a small set of neurons regulate IPCs, stress resistance and metabolism in adult
Drosophila
.</abstract><cop>Basel</cop><pub>SP Birkhäuser Verlag Basel</pub><pmid>22828865</pmid><doi>10.1007/s00018-012-1097-z</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1420-682X |
ispartof | Cellular and molecular life sciences : CMLS, 2012-12, Vol.69 (23), p.4051-4066 |
issn | 1420-682X 1420-9071 1420-9071 |
language | eng |
recordid | cdi_swepub_primary_oai_DiVA_org_su_80362 |
source | PubMed (Medline); Springer Nature |
subjects | Animals Animals, Genetically Modified Biochemistry Biomedical and Life Sciences Biomedicine Brain - cytology Brain - metabolism Carbohydrates - blood Cell Biology Cellular biology Drosophila Drosophila melanogaster Drosophila melanogaster - genetics Drosophila melanogaster - metabolism Drosophila Proteins - genetics Drosophila Proteins - metabolism Fecundity Green Fluorescent Proteins - genetics Green Fluorescent Proteins - metabolism Hemolymph - metabolism Hormones Insulin - biosynthesis Insulin signaling Insulin-like growth factors Insulins - genetics Insulins - metabolism Life Sciences Lipids - blood Microscopy, Confocal Neurons - metabolism Neuropeptides Neuropeptides - genetics Neuropeptides - metabolism Neurosecretory Systems - cytology Neurosecretory Systems - metabolism Peptide hormones Peptides Receptors, Neuropeptide - genetics Receptors, Neuropeptide - metabolism Research Article Reverse Transcriptase Polymerase Chain Reaction RNA Interference Starvation Stress response Stress, Physiological |
title | Identified peptidergic neurons in the Drosophila brain regulate insulin-producing cells, stress responses and metabolism by coexpressed short neuropeptide F and corazonin |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T23%3A11%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identified%20peptidergic%20neurons%20in%20the%20Drosophila%20brain%20regulate%20insulin-producing%20cells,%20stress%20responses%20and%20metabolism%20by%20coexpressed%20short%20neuropeptide%20F%20and%20corazonin&rft.jtitle=Cellular%20and%20molecular%20life%20sciences%20:%20CMLS&rft.au=Kapan,%20Neval&rft.date=2012-12-01&rft.volume=69&rft.issue=23&rft.spage=4051&rft.epage=4066&rft.pages=4051-4066&rft.issn=1420-682X&rft.eissn=1420-9071&rft_id=info:doi/10.1007/s00018-012-1097-z&rft_dat=%3Cproquest_swepu%3E1702650587%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c596t-431d8087b9854632d6c24c8ae536819f0fa0400652123e5f48e73be4c67c88b03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1141090376&rft_id=info:pmid/22828865&rfr_iscdi=true |