Loading…
On the Condensed Phase Ring-Closure of Vinylheptafulvalene and Ring-Opening of Gaseous Dihydroazulene
Dihydroazulenes are interesting because of their photoswitching behavior. While the ring-opening to vinylheptafulvalene (VHF) is light induced, the back reaction is known to proceed thermally. In the present paper, we show the first gas phase study of the ring-opening reaction of 2-phenyl-1,8a-dihyd...
Saved in:
Published in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2013-04, Vol.117 (16), p.3340-3347 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Dihydroazulenes are interesting because of their photoswitching behavior. While the ring-opening to vinylheptafulvalene (VHF) is light induced, the back reaction is known to proceed thermally. In the present paper, we show the first gas phase study of the ring-opening reaction of 2-phenyl-1,8a-dihydroazulene-1,1-dicarbonitrile (Ph-DHA) by means of time-resolved photoelectron spectroscopy which permits us to follow the ring-opening process. Moreover, we investigated s-trans-Ph-VHF in a series of transient absorption experiments, supported by ab initio computations, to understand the origin of the absence of light-induced ring-closure. The transient absorption results show a biexponential decay governed by a hitherto unknown state. This state is accessed within 1–2 ps and return to the ground state is probably driven through a cis–trans isomerization about the exocyclic C1C2 double bond. The rapid decrease in potential energy disfavors internal rotation to s-cis-Ph-VHF, the structure that would precede the ring-closure reaction. |
---|---|
ISSN: | 1089-5639 1520-5215 1520-5215 |
DOI: | 10.1021/jp400616c |