Loading…

Vibrational spectroscopic study of SiO2-based nanotubes

Novel organic–inorganic hybrid nanotubes containing silica and ethane (EtSNT), ethylene (ESNT) and acetylene (ASNT) units, as well as brominated ESNT (Br-ESNT) and glycine-modified Br-ESNT (Gly-ESNT) have been studied by IR and Raman spectroscopy. The results are compared with the spectral features...

Full description

Saved in:
Bibliographic Details
Published in:Vibrational spectroscopy 2013-05, Vol.66, p.104-118
Main Authors: Fischer, Christian E., Mink, János, Hajba, László, Bacsik, Zoltán, Németh, Csaba, Mihály, Judith, Raith, Alexander, Cokoja, Mirza, Kühn, Fritz E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Novel organic–inorganic hybrid nanotubes containing silica and ethane (EtSNT), ethylene (ESNT) and acetylene (ASNT) units, as well as brominated ESNT (Br-ESNT) and glycine-modified Br-ESNT (Gly-ESNT) have been studied by IR and Raman spectroscopy. The results are compared with the spectral features for conventional silica nanotubes (SNT) and amorphous silica. Bands peculiar to organic moieties have been detected and assigned. Assignment of the silicate backbone vibrations was based on the results of normal coordinate calculations. Furthermore, characteristic silicate, so-called ‘nanotube’ vibrations have been identified and their band positions have been summarized to serve as a future reference for such compounds. SiOSi antisymmetric stretchings were observed in the range 1000–1110cm−1, while the symmetric stretchings appeared between 760 and 960cm−1 for EtSNT, ESNT and Br-ESNT. Force constants have been refined for models of the repeating structure units: O3SiOSi(OSi)3 for SNT and SiCHnCHnSi(OSi)3 for organosilica nanotubes (n=2, EtSNT; n=1, ESNT and n=0, ASNT). The calculated SiO stretching force constants were increased from 4.79 to 4.88 and 5.11Ncm−1 for EtSNT, ESNT and ASNT, respectively. The force constants have been compared with those for several silicates and SiO bond length are predicted and discussed.
ISSN:0924-2031
1873-3697
1873-3697
DOI:10.1016/j.vibspec.2013.01.012