Loading…
Vibrational spectroscopic study of SiO2-based nanotubes
Novel organic–inorganic hybrid nanotubes containing silica and ethane (EtSNT), ethylene (ESNT) and acetylene (ASNT) units, as well as brominated ESNT (Br-ESNT) and glycine-modified Br-ESNT (Gly-ESNT) have been studied by IR and Raman spectroscopy. The results are compared with the spectral features...
Saved in:
Published in: | Vibrational spectroscopy 2013-05, Vol.66, p.104-118 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Novel organic–inorganic hybrid nanotubes containing silica and ethane (EtSNT), ethylene (ESNT) and acetylene (ASNT) units, as well as brominated ESNT (Br-ESNT) and glycine-modified Br-ESNT (Gly-ESNT) have been studied by IR and Raman spectroscopy. The results are compared with the spectral features for conventional silica nanotubes (SNT) and amorphous silica. Bands peculiar to organic moieties have been detected and assigned. Assignment of the silicate backbone vibrations was based on the results of normal coordinate calculations. Furthermore, characteristic silicate, so-called ‘nanotube’ vibrations have been identified and their band positions have been summarized to serve as a future reference for such compounds. SiOSi antisymmetric stretchings were observed in the range 1000–1110cm−1, while the symmetric stretchings appeared between 760 and 960cm−1 for EtSNT, ESNT and Br-ESNT.
Force constants have been refined for models of the repeating structure units: O3SiOSi(OSi)3 for SNT and SiCHnCHnSi(OSi)3 for organosilica nanotubes (n=2, EtSNT; n=1, ESNT and n=0, ASNT). The calculated SiO stretching force constants were increased from 4.79 to 4.88 and 5.11Ncm−1 for EtSNT, ESNT and ASNT, respectively. The force constants have been compared with those for several silicates and SiO bond length are predicted and discussed. |
---|---|
ISSN: | 0924-2031 1873-3697 1873-3697 |
DOI: | 10.1016/j.vibspec.2013.01.012 |