Loading…

Combined Effect of Glycine and Sea Salt on Aerosol Cloud Droplet Activation Predicted by Molecular Dynamics Simulations

The present study illustrates the combined effect of organic and inorganic compounds on cloud droplet nucleation and activation processes representative for the marine environment. Amino acids and sea salt are common marine cloud condensation nuclei (CCN) which act as a prerequisite for growth of cl...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2013-10, Vol.117 (41), p.10746-10752
Main Authors: Sun, Lu, Hede, Thomas, Tu, Yaoquan, Leck, Caroline, Ågren, Hans
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The present study illustrates the combined effect of organic and inorganic compounds on cloud droplet nucleation and activation processes representative for the marine environment. Amino acids and sea salt are common marine cloud condensation nuclei (CCN) which act as a prerequisite for growth of cloud droplets. The chemical and physical properties of these CCN play a key role for interfacial properties such as surface tension, which is important for the optical properties of clouds and for heterogeneous reactions. However, there is a lack of detailed information and in situ measurements of surface tension of such nanosized droplets. Here we present a study of the combined effect of zwitterionic glycine (ZGLY) and sea salt in nanosized water droplets using molecular dynamics simulations, where particular emphasis is placed on the surface tension for the nanosized droplets. The critical supersaturation is estimated by the Köhler equation. It is found that dissolved sea salt interacts with ZGLY through a water bridge and weakens the hydrogen bonds among ZGLYs, which has a significant effect on both surface tension and water vapor supersaturation. Clusters of glycine mixed with sea salt deliquesce more efficiently and have higher growth factors.
ISSN:1089-5639
1520-5215
1520-5215
DOI:10.1021/jp407538x