Loading…
Sensitivity analysis for unobserved confounding of direct and indirect effects using uncertainty intervals
To estimate direct and indirect effects of an exposure on an outcome from observed data, strong assumptions about unconfoundedness are required. Since these assumptions cannot be tested using the observed data, a mediation analysis should always be accompanied by a sensitivity analysis of the result...
Saved in:
Published in: | Statistics in medicine 2018-05, Vol.37 (10), p.1744-1762 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3870-7910b408a42c2b21da6e6c2c85c1a2bd2f4bea56ddc271eb8fefdf4655bdb5d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c3870-7910b408a42c2b21da6e6c2c85c1a2bd2f4bea56ddc271eb8fefdf4655bdb5d3 |
container_end_page | 1762 |
container_issue | 10 |
container_start_page | 1744 |
container_title | Statistics in medicine |
container_volume | 37 |
creator | Lindmark, Anita Luna, Xavier Eriksson, Marie |
description | To estimate direct and indirect effects of an exposure on an outcome from observed data, strong assumptions about unconfoundedness are required. Since these assumptions cannot be tested using the observed data, a mediation analysis should always be accompanied by a sensitivity analysis of the resulting estimates. In this article, we propose a sensitivity analysis method for parametric estimation of direct and indirect effects when the exposure, mediator, and outcome are all binary. The sensitivity parameters consist of the correlations between the error terms of the exposure, mediator, and outcome models. These correlations are incorporated into the estimation of the model parameters and identification sets are then obtained for the direct and indirect effects for a range of plausible correlation values. We take the sampling variability into account through the construction of uncertainty intervals. The proposed method is able to assess sensitivity to both mediator‐outcome confounding and confounding involving the exposure. To illustrate the method, we apply it to a mediation study based on the data from the Swedish Stroke Register (Riksstroke). An R package that implements the proposed method is available. |
doi_str_mv | 10.1002/sim.7620 |
format | article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_umu_125929</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2007121177</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3870-7910b408a42c2b21da6e6c2c85c1a2bd2f4bea56ddc271eb8fefdf4655bdb5d3</originalsourceid><addsrcrecordid>eNp1kV1rFDEUhoNY7FoFf4EMeNObaZOzM8nMZalVCxUvWrwN-TgpWWaSNZm07L83a9cWBG_yEnh4OOe8hHxg9IxRCufZz2eCA31FVoyOoqXQD6_JioIQLResPyZvc95QylgP4g05hrHjMKzHFdncYsh-8Q9-2TUqqGmXfW5cTE0JUWdMD2gbE4OLJVgf7pvoGusTmqXStvHh8EHnauSm5D1UgsG0KB-qtD7Voqb8jhy5Gvj-kCfk7svV3eW39ubH1-vLi5vWrAdBWzEyqjs6qA4MaGBWceQGzNAbpkBbcJ1G1XNrDQiGenDorOt432ure7s-Ie2TNj_itmi5TX5WaSej8vKz_3khY7qXZS6SQT_CWPnTJ36b4q-CeZGzzwanSQWMJUugVDBgTIiKfvoH3cSS6tH2FKwHxnlHX4QmxZwTuucRGJX7umStS-7rqujHg7DoGe0z-Lefl2Ue_YS7_4rk7fX3P8LfyZihRg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2023816640</pqid></control><display><type>article</type><title>Sensitivity analysis for unobserved confounding of direct and indirect effects using uncertainty intervals</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Lindmark, Anita ; Luna, Xavier ; Eriksson, Marie</creator><creatorcontrib>Lindmark, Anita ; Luna, Xavier ; Eriksson, Marie</creatorcontrib><description>To estimate direct and indirect effects of an exposure on an outcome from observed data, strong assumptions about unconfoundedness are required. Since these assumptions cannot be tested using the observed data, a mediation analysis should always be accompanied by a sensitivity analysis of the resulting estimates. In this article, we propose a sensitivity analysis method for parametric estimation of direct and indirect effects when the exposure, mediator, and outcome are all binary. The sensitivity parameters consist of the correlations between the error terms of the exposure, mediator, and outcome models. These correlations are incorporated into the estimation of the model parameters and identification sets are then obtained for the direct and indirect effects for a range of plausible correlation values. We take the sampling variability into account through the construction of uncertainty intervals. The proposed method is able to assess sensitivity to both mediator‐outcome confounding and confounding involving the exposure. To illustrate the method, we apply it to a mediation study based on the data from the Swedish Stroke Register (Riksstroke). An R package that implements the proposed method is available.</description><identifier>ISSN: 0277-6715</identifier><identifier>ISSN: 1097-0258</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/sim.7620</identifier><identifier>PMID: 29462839</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>direct effects ; indirect effects ; mediation ; Sensitivity analysis ; sequential ignorability ; Statistics ; statistik ; unmeasured confounding</subject><ispartof>Statistics in medicine, 2018-05, Vol.37 (10), p.1744-1762</ispartof><rights>Copyright © 2018 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3870-7910b408a42c2b21da6e6c2c85c1a2bd2f4bea56ddc271eb8fefdf4655bdb5d3</citedby><cites>FETCH-LOGICAL-c3870-7910b408a42c2b21da6e6c2c85c1a2bd2f4bea56ddc271eb8fefdf4655bdb5d3</cites><orcidid>0000-0003-3298-1555 ; 0000-0003-3187-1987 ; 0000-0002-4600-0060</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29462839$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-125929$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Lindmark, Anita</creatorcontrib><creatorcontrib>Luna, Xavier</creatorcontrib><creatorcontrib>Eriksson, Marie</creatorcontrib><title>Sensitivity analysis for unobserved confounding of direct and indirect effects using uncertainty intervals</title><title>Statistics in medicine</title><addtitle>Stat Med</addtitle><description>To estimate direct and indirect effects of an exposure on an outcome from observed data, strong assumptions about unconfoundedness are required. Since these assumptions cannot be tested using the observed data, a mediation analysis should always be accompanied by a sensitivity analysis of the resulting estimates. In this article, we propose a sensitivity analysis method for parametric estimation of direct and indirect effects when the exposure, mediator, and outcome are all binary. The sensitivity parameters consist of the correlations between the error terms of the exposure, mediator, and outcome models. These correlations are incorporated into the estimation of the model parameters and identification sets are then obtained for the direct and indirect effects for a range of plausible correlation values. We take the sampling variability into account through the construction of uncertainty intervals. The proposed method is able to assess sensitivity to both mediator‐outcome confounding and confounding involving the exposure. To illustrate the method, we apply it to a mediation study based on the data from the Swedish Stroke Register (Riksstroke). An R package that implements the proposed method is available.</description><subject>direct effects</subject><subject>indirect effects</subject><subject>mediation</subject><subject>Sensitivity analysis</subject><subject>sequential ignorability</subject><subject>Statistics</subject><subject>statistik</subject><subject>unmeasured confounding</subject><issn>0277-6715</issn><issn>1097-0258</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kV1rFDEUhoNY7FoFf4EMeNObaZOzM8nMZalVCxUvWrwN-TgpWWaSNZm07L83a9cWBG_yEnh4OOe8hHxg9IxRCufZz2eCA31FVoyOoqXQD6_JioIQLResPyZvc95QylgP4g05hrHjMKzHFdncYsh-8Q9-2TUqqGmXfW5cTE0JUWdMD2gbE4OLJVgf7pvoGusTmqXStvHh8EHnauSm5D1UgsG0KB-qtD7Voqb8jhy5Gvj-kCfk7svV3eW39ubH1-vLi5vWrAdBWzEyqjs6qA4MaGBWceQGzNAbpkBbcJ1G1XNrDQiGenDorOt432ure7s-Ie2TNj_itmi5TX5WaSej8vKz_3khY7qXZS6SQT_CWPnTJ36b4q-CeZGzzwanSQWMJUugVDBgTIiKfvoH3cSS6tH2FKwHxnlHX4QmxZwTuucRGJX7umStS-7rqujHg7DoGe0z-Lefl2Ue_YS7_4rk7fX3P8LfyZihRg</recordid><startdate>20180510</startdate><enddate>20180510</enddate><creator>Lindmark, Anita</creator><creator>Luna, Xavier</creator><creator>Eriksson, Marie</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><scope>ADHXS</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>D93</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0003-3298-1555</orcidid><orcidid>https://orcid.org/0000-0003-3187-1987</orcidid><orcidid>https://orcid.org/0000-0002-4600-0060</orcidid></search><sort><creationdate>20180510</creationdate><title>Sensitivity analysis for unobserved confounding of direct and indirect effects using uncertainty intervals</title><author>Lindmark, Anita ; Luna, Xavier ; Eriksson, Marie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3870-7910b408a42c2b21da6e6c2c85c1a2bd2f4bea56ddc271eb8fefdf4655bdb5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>direct effects</topic><topic>indirect effects</topic><topic>mediation</topic><topic>Sensitivity analysis</topic><topic>sequential ignorability</topic><topic>Statistics</topic><topic>statistik</topic><topic>unmeasured confounding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lindmark, Anita</creatorcontrib><creatorcontrib>Luna, Xavier</creatorcontrib><creatorcontrib>Eriksson, Marie</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>SWEPUB Umeå universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Umeå universitet</collection><collection>SwePub Articles full text</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lindmark, Anita</au><au>Luna, Xavier</au><au>Eriksson, Marie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sensitivity analysis for unobserved confounding of direct and indirect effects using uncertainty intervals</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Stat Med</addtitle><date>2018-05-10</date><risdate>2018</risdate><volume>37</volume><issue>10</issue><spage>1744</spage><epage>1762</epage><pages>1744-1762</pages><issn>0277-6715</issn><issn>1097-0258</issn><eissn>1097-0258</eissn><abstract>To estimate direct and indirect effects of an exposure on an outcome from observed data, strong assumptions about unconfoundedness are required. Since these assumptions cannot be tested using the observed data, a mediation analysis should always be accompanied by a sensitivity analysis of the resulting estimates. In this article, we propose a sensitivity analysis method for parametric estimation of direct and indirect effects when the exposure, mediator, and outcome are all binary. The sensitivity parameters consist of the correlations between the error terms of the exposure, mediator, and outcome models. These correlations are incorporated into the estimation of the model parameters and identification sets are then obtained for the direct and indirect effects for a range of plausible correlation values. We take the sampling variability into account through the construction of uncertainty intervals. The proposed method is able to assess sensitivity to both mediator‐outcome confounding and confounding involving the exposure. To illustrate the method, we apply it to a mediation study based on the data from the Swedish Stroke Register (Riksstroke). An R package that implements the proposed method is available.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29462839</pmid><doi>10.1002/sim.7620</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-3298-1555</orcidid><orcidid>https://orcid.org/0000-0003-3187-1987</orcidid><orcidid>https://orcid.org/0000-0002-4600-0060</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0277-6715 |
ispartof | Statistics in medicine, 2018-05, Vol.37 (10), p.1744-1762 |
issn | 0277-6715 1097-0258 1097-0258 |
language | eng |
recordid | cdi_swepub_primary_oai_DiVA_org_umu_125929 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | direct effects indirect effects mediation Sensitivity analysis sequential ignorability Statistics statistik unmeasured confounding |
title | Sensitivity analysis for unobserved confounding of direct and indirect effects using uncertainty intervals |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T02%3A36%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sensitivity%20analysis%20for%20unobserved%20confounding%20of%20direct%20and%20indirect%20effects%20using%20uncertainty%20intervals&rft.jtitle=Statistics%20in%20medicine&rft.au=Lindmark,%20Anita&rft.date=2018-05-10&rft.volume=37&rft.issue=10&rft.spage=1744&rft.epage=1762&rft.pages=1744-1762&rft.issn=0277-6715&rft.eissn=1097-0258&rft_id=info:doi/10.1002/sim.7620&rft_dat=%3Cproquest_swepu%3E2007121177%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3870-7910b408a42c2b21da6e6c2c85c1a2bd2f4bea56ddc271eb8fefdf4655bdb5d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2023816640&rft_id=info:pmid/29462839&rfr_iscdi=true |