Loading…
Prediction of activation patterns preceding hallucinations in patients with schizophrenia using machine learning with structured sparsity
Despite significant progress in the field, the detection of fMRI signal changes during hallucinatory events remains difficult and time‐consuming. This article first proposes a machine‐learning algorithm to automatically identify resting‐state fMRI periods that precede hallucinations versus periods t...
Saved in:
Published in: | Human brain mapping 2018-04, Vol.39 (4), p.1777-1788 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5153-764362d941837404dc01c0283e59788fa08bd13ebc6b2be04799d16229ed46723 |
---|---|
cites | cdi_FETCH-LOGICAL-c5153-764362d941837404dc01c0283e59788fa08bd13ebc6b2be04799d16229ed46723 |
container_end_page | 1788 |
container_issue | 4 |
container_start_page | 1777 |
container_title | Human brain mapping |
container_volume | 39 |
creator | de Pierrefeu, Amicie Fovet, Thomas Hadj‐Selem, Fouad Löfstedt, Tommy Ciuciu, Philippe Lefebvre, Stephanie Thomas, Pierre Lopes, Renaud Jardri, Renaud Duchesnay, Edouard |
description | Despite significant progress in the field, the detection of fMRI signal changes during hallucinatory events remains difficult and time‐consuming. This article first proposes a machine‐learning algorithm to automatically identify resting‐state fMRI periods that precede hallucinations versus periods that do not. When applied to whole‐brain fMRI data, state‐of‐the‐art classification methods, such as support vector machines (SVM), yield dense solutions that are difficult to interpret. We proposed to extend the existing sparse classification methods by taking the spatial structure of brain images into account with structured sparsity using the total variation penalty. Based on this approach, we obtained reliable classifying performances associated with interpretable predictive patterns, composed of two clearly identifiable clusters in speech‐related brain regions. The variation in transition‐to‐hallucination functional patterns not only from one patient to another but also from one occurrence to the next (e.g., also depending on the sensory modalities involved) appeared to be the major difficulty when developing effective classifiers. Consequently, second, this article aimed to characterize the variability within the prehallucination patterns using an extension of principal component analysis with spatial constraints. The principal components (PCs) and the associated basis patterns shed light on the intrinsic structures of the variability present in the dataset. Such results are promising in the scope of innovative fMRI‐guided therapy for drug‐resistant hallucinations, such as fMRI‐based neurofeedback. |
doi_str_mv | 10.1002/hbm.23953 |
format | article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_umu_145654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2012853825</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5153-764362d941837404dc01c0283e59788fa08bd13ebc6b2be04799d16229ed46723</originalsourceid><addsrcrecordid>eNp1ks-O0zAQxiMEYpeFAy-AInGBQ3Y9duLYF6Sy_ClSERyAq-U4buNVYgc7blXegLfGbcqKXQnJku3xb76Zsb4sew7oEhDCV10zXGLCK_IgOwfE6wIBJw8PZ1oVvKzhLHsSwg1CABWCx9kZ5qSEtM6z31-9bo2ajLO5W-cynbbyeBvlNGlvQz56rRJjN3kn-z4qY49AyM0RMtpOId-ZqcuD6swvN3ZeWyPzGA45g0xBq_NeS28PgZmcfFRTTLXzMEofzLR_mj1ayz7oZ6f9Ivv-4f2362Wx-vLx0_ViVagKKlLUtCQUt7wERuoSla1CoBBmRFe8ZmwtEWtaILpRtMGNRmXNeQsUY67bktaYXGTFrBt2eoyNGL0ZpN8LJ414Z34shPMbEYcooKxoVSb-zcwneNCtSuN62d9Ju_tiTSc2bisoo6lXlgRezwLdvbTlYiWUlgIBYwTXsIXEvjoV8-5n1GESgwlK97202sUggDNOAQiuEvryHnrjorfp6wRGgFlF2JE6FVfeheD1-rYDQOJgHpHMI47mSeyLfye9Jf-6JQFXM7Azvd7_X0ks336eJf8AqOHQ2w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2012853825</pqid></control><display><type>article</type><title>Prediction of activation patterns preceding hallucinations in patients with schizophrenia using machine learning with structured sparsity</title><source>PubMed Central</source><creator>de Pierrefeu, Amicie ; Fovet, Thomas ; Hadj‐Selem, Fouad ; Löfstedt, Tommy ; Ciuciu, Philippe ; Lefebvre, Stephanie ; Thomas, Pierre ; Lopes, Renaud ; Jardri, Renaud ; Duchesnay, Edouard</creator><creatorcontrib>de Pierrefeu, Amicie ; Fovet, Thomas ; Hadj‐Selem, Fouad ; Löfstedt, Tommy ; Ciuciu, Philippe ; Lefebvre, Stephanie ; Thomas, Pierre ; Lopes, Renaud ; Jardri, Renaud ; Duchesnay, Edouard</creatorcontrib><description>Despite significant progress in the field, the detection of fMRI signal changes during hallucinatory events remains difficult and time‐consuming. This article first proposes a machine‐learning algorithm to automatically identify resting‐state fMRI periods that precede hallucinations versus periods that do not. When applied to whole‐brain fMRI data, state‐of‐the‐art classification methods, such as support vector machines (SVM), yield dense solutions that are difficult to interpret. We proposed to extend the existing sparse classification methods by taking the spatial structure of brain images into account with structured sparsity using the total variation penalty. Based on this approach, we obtained reliable classifying performances associated with interpretable predictive patterns, composed of two clearly identifiable clusters in speech‐related brain regions. The variation in transition‐to‐hallucination functional patterns not only from one patient to another but also from one occurrence to the next (e.g., also depending on the sensory modalities involved) appeared to be the major difficulty when developing effective classifiers. Consequently, second, this article aimed to characterize the variability within the prehallucination patterns using an extension of principal component analysis with spatial constraints. The principal components (PCs) and the associated basis patterns shed light on the intrinsic structures of the variability present in the dataset. Such results are promising in the scope of innovative fMRI‐guided therapy for drug‐resistant hallucinations, such as fMRI‐based neurofeedback.</description><identifier>ISSN: 1065-9471</identifier><identifier>ISSN: 1097-0193</identifier><identifier>EISSN: 1097-0193</identifier><identifier>DOI: 10.1002/hbm.23953</identifier><identifier>PMID: 29341341</identifier><language>eng</language><publisher>United States: John Wiley & Sons, Inc</publisher><subject>Adult ; Auditory Perception - physiology ; Brain ; Brain - diagnostic imaging ; Brain - physiopathology ; Brain mapping ; Brain Mapping - methods ; Classification ; Computerized Image Analysis ; datoriserad bildanalys ; Feedback ; Female ; Functional magnetic resonance imaging ; Hallucinations ; Hallucinations - diagnostic imaging ; Hallucinations - physiopathology ; Human health and pathology ; Humans ; Image classification ; Learning algorithms ; Life Sciences ; Machine Learning ; Magnetic Resonance Imaging - methods ; Male ; Medical innovations ; Mental disorders ; Neural Pathways - diagnostic imaging ; Neural Pathways - physiopathology ; Neurofeedback ; Pattern Recognition, Automated - methods ; Predictions ; Principal Component Analysis ; Principal components analysis ; Psychiatrics and mental health ; real-time fMRI ; resting-state networks ; Schizophrenia ; Schizophrenia - diagnostic imaging ; Schizophrenia - physiopathology ; Sparsity ; Spatial analysis ; Statistics ; Support vector machines ; Variability</subject><ispartof>Human brain mapping, 2018-04, Vol.39 (4), p.1777-1788</ispartof><rights>2018 Wiley Periodicals, Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5153-764362d941837404dc01c0283e59788fa08bd13ebc6b2be04799d16229ed46723</citedby><cites>FETCH-LOGICAL-c5153-764362d941837404dc01c0283e59788fa08bd13ebc6b2be04799d16229ed46723</cites><orcidid>0000-0001-7119-7646 ; 0000-0002-8459-7742 ; 0000-0003-0077-624X ; 0000-0002-5231-6010 ; 0000-0002-4073-3490 ; 0000-0003-4596-1502 ; 0000-0002-2425-2283 ; 0000-0001-5374-962X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6866438/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6866438/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29341341$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://cea.hal.science/cea-01883271$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-145654$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>de Pierrefeu, Amicie</creatorcontrib><creatorcontrib>Fovet, Thomas</creatorcontrib><creatorcontrib>Hadj‐Selem, Fouad</creatorcontrib><creatorcontrib>Löfstedt, Tommy</creatorcontrib><creatorcontrib>Ciuciu, Philippe</creatorcontrib><creatorcontrib>Lefebvre, Stephanie</creatorcontrib><creatorcontrib>Thomas, Pierre</creatorcontrib><creatorcontrib>Lopes, Renaud</creatorcontrib><creatorcontrib>Jardri, Renaud</creatorcontrib><creatorcontrib>Duchesnay, Edouard</creatorcontrib><title>Prediction of activation patterns preceding hallucinations in patients with schizophrenia using machine learning with structured sparsity</title><title>Human brain mapping</title><addtitle>Hum Brain Mapp</addtitle><description>Despite significant progress in the field, the detection of fMRI signal changes during hallucinatory events remains difficult and time‐consuming. This article first proposes a machine‐learning algorithm to automatically identify resting‐state fMRI periods that precede hallucinations versus periods that do not. When applied to whole‐brain fMRI data, state‐of‐the‐art classification methods, such as support vector machines (SVM), yield dense solutions that are difficult to interpret. We proposed to extend the existing sparse classification methods by taking the spatial structure of brain images into account with structured sparsity using the total variation penalty. Based on this approach, we obtained reliable classifying performances associated with interpretable predictive patterns, composed of two clearly identifiable clusters in speech‐related brain regions. The variation in transition‐to‐hallucination functional patterns not only from one patient to another but also from one occurrence to the next (e.g., also depending on the sensory modalities involved) appeared to be the major difficulty when developing effective classifiers. Consequently, second, this article aimed to characterize the variability within the prehallucination patterns using an extension of principal component analysis with spatial constraints. The principal components (PCs) and the associated basis patterns shed light on the intrinsic structures of the variability present in the dataset. Such results are promising in the scope of innovative fMRI‐guided therapy for drug‐resistant hallucinations, such as fMRI‐based neurofeedback.</description><subject>Adult</subject><subject>Auditory Perception - physiology</subject><subject>Brain</subject><subject>Brain - diagnostic imaging</subject><subject>Brain - physiopathology</subject><subject>Brain mapping</subject><subject>Brain Mapping - methods</subject><subject>Classification</subject><subject>Computerized Image Analysis</subject><subject>datoriserad bildanalys</subject><subject>Feedback</subject><subject>Female</subject><subject>Functional magnetic resonance imaging</subject><subject>Hallucinations</subject><subject>Hallucinations - diagnostic imaging</subject><subject>Hallucinations - physiopathology</subject><subject>Human health and pathology</subject><subject>Humans</subject><subject>Image classification</subject><subject>Learning algorithms</subject><subject>Life Sciences</subject><subject>Machine Learning</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Medical innovations</subject><subject>Mental disorders</subject><subject>Neural Pathways - diagnostic imaging</subject><subject>Neural Pathways - physiopathology</subject><subject>Neurofeedback</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Predictions</subject><subject>Principal Component Analysis</subject><subject>Principal components analysis</subject><subject>Psychiatrics and mental health</subject><subject>real-time fMRI</subject><subject>resting-state networks</subject><subject>Schizophrenia</subject><subject>Schizophrenia - diagnostic imaging</subject><subject>Schizophrenia - physiopathology</subject><subject>Sparsity</subject><subject>Spatial analysis</subject><subject>Statistics</subject><subject>Support vector machines</subject><subject>Variability</subject><issn>1065-9471</issn><issn>1097-0193</issn><issn>1097-0193</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1ks-O0zAQxiMEYpeFAy-AInGBQ3Y9duLYF6Sy_ClSERyAq-U4buNVYgc7blXegLfGbcqKXQnJku3xb76Zsb4sew7oEhDCV10zXGLCK_IgOwfE6wIBJw8PZ1oVvKzhLHsSwg1CABWCx9kZ5qSEtM6z31-9bo2ajLO5W-cynbbyeBvlNGlvQz56rRJjN3kn-z4qY49AyM0RMtpOId-ZqcuD6swvN3ZeWyPzGA45g0xBq_NeS28PgZmcfFRTTLXzMEofzLR_mj1ayz7oZ6f9Ivv-4f2362Wx-vLx0_ViVagKKlLUtCQUt7wERuoSla1CoBBmRFe8ZmwtEWtaILpRtMGNRmXNeQsUY67bktaYXGTFrBt2eoyNGL0ZpN8LJ414Z34shPMbEYcooKxoVSb-zcwneNCtSuN62d9Ju_tiTSc2bisoo6lXlgRezwLdvbTlYiWUlgIBYwTXsIXEvjoV8-5n1GESgwlK97202sUggDNOAQiuEvryHnrjorfp6wRGgFlF2JE6FVfeheD1-rYDQOJgHpHMI47mSeyLfye9Jf-6JQFXM7Azvd7_X0ks336eJf8AqOHQ2w</recordid><startdate>201804</startdate><enddate>201804</enddate><creator>de Pierrefeu, Amicie</creator><creator>Fovet, Thomas</creator><creator>Hadj‐Selem, Fouad</creator><creator>Löfstedt, Tommy</creator><creator>Ciuciu, Philippe</creator><creator>Lefebvre, Stephanie</creator><creator>Thomas, Pierre</creator><creator>Lopes, Renaud</creator><creator>Jardri, Renaud</creator><creator>Duchesnay, Edouard</creator><general>John Wiley & Sons, Inc</general><general>Wiley</general><general>John Wiley and Sons Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D93</scope><orcidid>https://orcid.org/0000-0001-7119-7646</orcidid><orcidid>https://orcid.org/0000-0002-8459-7742</orcidid><orcidid>https://orcid.org/0000-0003-0077-624X</orcidid><orcidid>https://orcid.org/0000-0002-5231-6010</orcidid><orcidid>https://orcid.org/0000-0002-4073-3490</orcidid><orcidid>https://orcid.org/0000-0003-4596-1502</orcidid><orcidid>https://orcid.org/0000-0002-2425-2283</orcidid><orcidid>https://orcid.org/0000-0001-5374-962X</orcidid></search><sort><creationdate>201804</creationdate><title>Prediction of activation patterns preceding hallucinations in patients with schizophrenia using machine learning with structured sparsity</title><author>de Pierrefeu, Amicie ; Fovet, Thomas ; Hadj‐Selem, Fouad ; Löfstedt, Tommy ; Ciuciu, Philippe ; Lefebvre, Stephanie ; Thomas, Pierre ; Lopes, Renaud ; Jardri, Renaud ; Duchesnay, Edouard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5153-764362d941837404dc01c0283e59788fa08bd13ebc6b2be04799d16229ed46723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adult</topic><topic>Auditory Perception - physiology</topic><topic>Brain</topic><topic>Brain - diagnostic imaging</topic><topic>Brain - physiopathology</topic><topic>Brain mapping</topic><topic>Brain Mapping - methods</topic><topic>Classification</topic><topic>Computerized Image Analysis</topic><topic>datoriserad bildanalys</topic><topic>Feedback</topic><topic>Female</topic><topic>Functional magnetic resonance imaging</topic><topic>Hallucinations</topic><topic>Hallucinations - diagnostic imaging</topic><topic>Hallucinations - physiopathology</topic><topic>Human health and pathology</topic><topic>Humans</topic><topic>Image classification</topic><topic>Learning algorithms</topic><topic>Life Sciences</topic><topic>Machine Learning</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Medical innovations</topic><topic>Mental disorders</topic><topic>Neural Pathways - diagnostic imaging</topic><topic>Neural Pathways - physiopathology</topic><topic>Neurofeedback</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Predictions</topic><topic>Principal Component Analysis</topic><topic>Principal components analysis</topic><topic>Psychiatrics and mental health</topic><topic>real-time fMRI</topic><topic>resting-state networks</topic><topic>Schizophrenia</topic><topic>Schizophrenia - diagnostic imaging</topic><topic>Schizophrenia - physiopathology</topic><topic>Sparsity</topic><topic>Spatial analysis</topic><topic>Statistics</topic><topic>Support vector machines</topic><topic>Variability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Pierrefeu, Amicie</creatorcontrib><creatorcontrib>Fovet, Thomas</creatorcontrib><creatorcontrib>Hadj‐Selem, Fouad</creatorcontrib><creatorcontrib>Löfstedt, Tommy</creatorcontrib><creatorcontrib>Ciuciu, Philippe</creatorcontrib><creatorcontrib>Lefebvre, Stephanie</creatorcontrib><creatorcontrib>Thomas, Pierre</creatorcontrib><creatorcontrib>Lopes, Renaud</creatorcontrib><creatorcontrib>Jardri, Renaud</creatorcontrib><creatorcontrib>Duchesnay, Edouard</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Umeå universitet</collection><jtitle>Human brain mapping</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Pierrefeu, Amicie</au><au>Fovet, Thomas</au><au>Hadj‐Selem, Fouad</au><au>Löfstedt, Tommy</au><au>Ciuciu, Philippe</au><au>Lefebvre, Stephanie</au><au>Thomas, Pierre</au><au>Lopes, Renaud</au><au>Jardri, Renaud</au><au>Duchesnay, Edouard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of activation patterns preceding hallucinations in patients with schizophrenia using machine learning with structured sparsity</atitle><jtitle>Human brain mapping</jtitle><addtitle>Hum Brain Mapp</addtitle><date>2018-04</date><risdate>2018</risdate><volume>39</volume><issue>4</issue><spage>1777</spage><epage>1788</epage><pages>1777-1788</pages><issn>1065-9471</issn><issn>1097-0193</issn><eissn>1097-0193</eissn><abstract>Despite significant progress in the field, the detection of fMRI signal changes during hallucinatory events remains difficult and time‐consuming. This article first proposes a machine‐learning algorithm to automatically identify resting‐state fMRI periods that precede hallucinations versus periods that do not. When applied to whole‐brain fMRI data, state‐of‐the‐art classification methods, such as support vector machines (SVM), yield dense solutions that are difficult to interpret. We proposed to extend the existing sparse classification methods by taking the spatial structure of brain images into account with structured sparsity using the total variation penalty. Based on this approach, we obtained reliable classifying performances associated with interpretable predictive patterns, composed of two clearly identifiable clusters in speech‐related brain regions. The variation in transition‐to‐hallucination functional patterns not only from one patient to another but also from one occurrence to the next (e.g., also depending on the sensory modalities involved) appeared to be the major difficulty when developing effective classifiers. Consequently, second, this article aimed to characterize the variability within the prehallucination patterns using an extension of principal component analysis with spatial constraints. The principal components (PCs) and the associated basis patterns shed light on the intrinsic structures of the variability present in the dataset. Such results are promising in the scope of innovative fMRI‐guided therapy for drug‐resistant hallucinations, such as fMRI‐based neurofeedback.</abstract><cop>United States</cop><pub>John Wiley & Sons, Inc</pub><pmid>29341341</pmid><doi>10.1002/hbm.23953</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7119-7646</orcidid><orcidid>https://orcid.org/0000-0002-8459-7742</orcidid><orcidid>https://orcid.org/0000-0003-0077-624X</orcidid><orcidid>https://orcid.org/0000-0002-5231-6010</orcidid><orcidid>https://orcid.org/0000-0002-4073-3490</orcidid><orcidid>https://orcid.org/0000-0003-4596-1502</orcidid><orcidid>https://orcid.org/0000-0002-2425-2283</orcidid><orcidid>https://orcid.org/0000-0001-5374-962X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1065-9471 |
ispartof | Human brain mapping, 2018-04, Vol.39 (4), p.1777-1788 |
issn | 1065-9471 1097-0193 1097-0193 |
language | eng |
recordid | cdi_swepub_primary_oai_DiVA_org_umu_145654 |
source | PubMed Central |
subjects | Adult Auditory Perception - physiology Brain Brain - diagnostic imaging Brain - physiopathology Brain mapping Brain Mapping - methods Classification Computerized Image Analysis datoriserad bildanalys Feedback Female Functional magnetic resonance imaging Hallucinations Hallucinations - diagnostic imaging Hallucinations - physiopathology Human health and pathology Humans Image classification Learning algorithms Life Sciences Machine Learning Magnetic Resonance Imaging - methods Male Medical innovations Mental disorders Neural Pathways - diagnostic imaging Neural Pathways - physiopathology Neurofeedback Pattern Recognition, Automated - methods Predictions Principal Component Analysis Principal components analysis Psychiatrics and mental health real-time fMRI resting-state networks Schizophrenia Schizophrenia - diagnostic imaging Schizophrenia - physiopathology Sparsity Spatial analysis Statistics Support vector machines Variability |
title | Prediction of activation patterns preceding hallucinations in patients with schizophrenia using machine learning with structured sparsity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A22%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20activation%20patterns%20preceding%20hallucinations%20in%20patients%20with%20schizophrenia%20using%20machine%20learning%20with%20structured%20sparsity&rft.jtitle=Human%20brain%20mapping&rft.au=de%20Pierrefeu,%20Amicie&rft.date=2018-04&rft.volume=39&rft.issue=4&rft.spage=1777&rft.epage=1788&rft.pages=1777-1788&rft.issn=1065-9471&rft.eissn=1097-0193&rft_id=info:doi/10.1002/hbm.23953&rft_dat=%3Cproquest_swepu%3E2012853825%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5153-764362d941837404dc01c0283e59788fa08bd13ebc6b2be04799d16229ed46723%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2012853825&rft_id=info:pmid/29341341&rfr_iscdi=true |