Loading…

Prediction of activation patterns preceding hallucinations in patients with schizophrenia using machine learning with structured sparsity

Despite significant progress in the field, the detection of fMRI signal changes during hallucinatory events remains difficult and time‐consuming. This article first proposes a machine‐learning algorithm to automatically identify resting‐state fMRI periods that precede hallucinations versus periods t...

Full description

Saved in:
Bibliographic Details
Published in:Human brain mapping 2018-04, Vol.39 (4), p.1777-1788
Main Authors: de Pierrefeu, Amicie, Fovet, Thomas, Hadj‐Selem, Fouad, Löfstedt, Tommy, Ciuciu, Philippe, Lefebvre, Stephanie, Thomas, Pierre, Lopes, Renaud, Jardri, Renaud, Duchesnay, Edouard
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5153-764362d941837404dc01c0283e59788fa08bd13ebc6b2be04799d16229ed46723
cites cdi_FETCH-LOGICAL-c5153-764362d941837404dc01c0283e59788fa08bd13ebc6b2be04799d16229ed46723
container_end_page 1788
container_issue 4
container_start_page 1777
container_title Human brain mapping
container_volume 39
creator de Pierrefeu, Amicie
Fovet, Thomas
Hadj‐Selem, Fouad
Löfstedt, Tommy
Ciuciu, Philippe
Lefebvre, Stephanie
Thomas, Pierre
Lopes, Renaud
Jardri, Renaud
Duchesnay, Edouard
description Despite significant progress in the field, the detection of fMRI signal changes during hallucinatory events remains difficult and time‐consuming. This article first proposes a machine‐learning algorithm to automatically identify resting‐state fMRI periods that precede hallucinations versus periods that do not. When applied to whole‐brain fMRI data, state‐of‐the‐art classification methods, such as support vector machines (SVM), yield dense solutions that are difficult to interpret. We proposed to extend the existing sparse classification methods by taking the spatial structure of brain images into account with structured sparsity using the total variation penalty. Based on this approach, we obtained reliable classifying performances associated with interpretable predictive patterns, composed of two clearly identifiable clusters in speech‐related brain regions. The variation in transition‐to‐hallucination functional patterns not only from one patient to another but also from one occurrence to the next (e.g., also depending on the sensory modalities involved) appeared to be the major difficulty when developing effective classifiers. Consequently, second, this article aimed to characterize the variability within the prehallucination patterns using an extension of principal component analysis with spatial constraints. The principal components (PCs) and the associated basis patterns shed light on the intrinsic structures of the variability present in the dataset. Such results are promising in the scope of innovative fMRI‐guided therapy for drug‐resistant hallucinations, such as fMRI‐based neurofeedback.
doi_str_mv 10.1002/hbm.23953
format article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_umu_145654</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2012853825</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5153-764362d941837404dc01c0283e59788fa08bd13ebc6b2be04799d16229ed46723</originalsourceid><addsrcrecordid>eNp1ks-O0zAQxiMEYpeFAy-AInGBQ3Y9duLYF6Sy_ClSERyAq-U4buNVYgc7blXegLfGbcqKXQnJku3xb76Zsb4sew7oEhDCV10zXGLCK_IgOwfE6wIBJw8PZ1oVvKzhLHsSwg1CABWCx9kZ5qSEtM6z31-9bo2ajLO5W-cynbbyeBvlNGlvQz56rRJjN3kn-z4qY49AyM0RMtpOId-ZqcuD6swvN3ZeWyPzGA45g0xBq_NeS28PgZmcfFRTTLXzMEofzLR_mj1ayz7oZ6f9Ivv-4f2362Wx-vLx0_ViVagKKlLUtCQUt7wERuoSla1CoBBmRFe8ZmwtEWtaILpRtMGNRmXNeQsUY67bktaYXGTFrBt2eoyNGL0ZpN8LJ414Z34shPMbEYcooKxoVSb-zcwneNCtSuN62d9Ju_tiTSc2bisoo6lXlgRezwLdvbTlYiWUlgIBYwTXsIXEvjoV8-5n1GESgwlK97202sUggDNOAQiuEvryHnrjorfp6wRGgFlF2JE6FVfeheD1-rYDQOJgHpHMI47mSeyLfye9Jf-6JQFXM7Azvd7_X0ks336eJf8AqOHQ2w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2012853825</pqid></control><display><type>article</type><title>Prediction of activation patterns preceding hallucinations in patients with schizophrenia using machine learning with structured sparsity</title><source>PubMed Central</source><creator>de Pierrefeu, Amicie ; Fovet, Thomas ; Hadj‐Selem, Fouad ; Löfstedt, Tommy ; Ciuciu, Philippe ; Lefebvre, Stephanie ; Thomas, Pierre ; Lopes, Renaud ; Jardri, Renaud ; Duchesnay, Edouard</creator><creatorcontrib>de Pierrefeu, Amicie ; Fovet, Thomas ; Hadj‐Selem, Fouad ; Löfstedt, Tommy ; Ciuciu, Philippe ; Lefebvre, Stephanie ; Thomas, Pierre ; Lopes, Renaud ; Jardri, Renaud ; Duchesnay, Edouard</creatorcontrib><description>Despite significant progress in the field, the detection of fMRI signal changes during hallucinatory events remains difficult and time‐consuming. This article first proposes a machine‐learning algorithm to automatically identify resting‐state fMRI periods that precede hallucinations versus periods that do not. When applied to whole‐brain fMRI data, state‐of‐the‐art classification methods, such as support vector machines (SVM), yield dense solutions that are difficult to interpret. We proposed to extend the existing sparse classification methods by taking the spatial structure of brain images into account with structured sparsity using the total variation penalty. Based on this approach, we obtained reliable classifying performances associated with interpretable predictive patterns, composed of two clearly identifiable clusters in speech‐related brain regions. The variation in transition‐to‐hallucination functional patterns not only from one patient to another but also from one occurrence to the next (e.g., also depending on the sensory modalities involved) appeared to be the major difficulty when developing effective classifiers. Consequently, second, this article aimed to characterize the variability within the prehallucination patterns using an extension of principal component analysis with spatial constraints. The principal components (PCs) and the associated basis patterns shed light on the intrinsic structures of the variability present in the dataset. Such results are promising in the scope of innovative fMRI‐guided therapy for drug‐resistant hallucinations, such as fMRI‐based neurofeedback.</description><identifier>ISSN: 1065-9471</identifier><identifier>ISSN: 1097-0193</identifier><identifier>EISSN: 1097-0193</identifier><identifier>DOI: 10.1002/hbm.23953</identifier><identifier>PMID: 29341341</identifier><language>eng</language><publisher>United States: John Wiley &amp; Sons, Inc</publisher><subject>Adult ; Auditory Perception - physiology ; Brain ; Brain - diagnostic imaging ; Brain - physiopathology ; Brain mapping ; Brain Mapping - methods ; Classification ; Computerized Image Analysis ; datoriserad bildanalys ; Feedback ; Female ; Functional magnetic resonance imaging ; Hallucinations ; Hallucinations - diagnostic imaging ; Hallucinations - physiopathology ; Human health and pathology ; Humans ; Image classification ; Learning algorithms ; Life Sciences ; Machine Learning ; Magnetic Resonance Imaging - methods ; Male ; Medical innovations ; Mental disorders ; Neural Pathways - diagnostic imaging ; Neural Pathways - physiopathology ; Neurofeedback ; Pattern Recognition, Automated - methods ; Predictions ; Principal Component Analysis ; Principal components analysis ; Psychiatrics and mental health ; real-time fMRI ; resting-state networks ; Schizophrenia ; Schizophrenia - diagnostic imaging ; Schizophrenia - physiopathology ; Sparsity ; Spatial analysis ; Statistics ; Support vector machines ; Variability</subject><ispartof>Human brain mapping, 2018-04, Vol.39 (4), p.1777-1788</ispartof><rights>2018 Wiley Periodicals, Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5153-764362d941837404dc01c0283e59788fa08bd13ebc6b2be04799d16229ed46723</citedby><cites>FETCH-LOGICAL-c5153-764362d941837404dc01c0283e59788fa08bd13ebc6b2be04799d16229ed46723</cites><orcidid>0000-0001-7119-7646 ; 0000-0002-8459-7742 ; 0000-0003-0077-624X ; 0000-0002-5231-6010 ; 0000-0002-4073-3490 ; 0000-0003-4596-1502 ; 0000-0002-2425-2283 ; 0000-0001-5374-962X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6866438/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6866438/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29341341$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://cea.hal.science/cea-01883271$$DView record in HAL$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-145654$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>de Pierrefeu, Amicie</creatorcontrib><creatorcontrib>Fovet, Thomas</creatorcontrib><creatorcontrib>Hadj‐Selem, Fouad</creatorcontrib><creatorcontrib>Löfstedt, Tommy</creatorcontrib><creatorcontrib>Ciuciu, Philippe</creatorcontrib><creatorcontrib>Lefebvre, Stephanie</creatorcontrib><creatorcontrib>Thomas, Pierre</creatorcontrib><creatorcontrib>Lopes, Renaud</creatorcontrib><creatorcontrib>Jardri, Renaud</creatorcontrib><creatorcontrib>Duchesnay, Edouard</creatorcontrib><title>Prediction of activation patterns preceding hallucinations in patients with schizophrenia using machine learning with structured sparsity</title><title>Human brain mapping</title><addtitle>Hum Brain Mapp</addtitle><description>Despite significant progress in the field, the detection of fMRI signal changes during hallucinatory events remains difficult and time‐consuming. This article first proposes a machine‐learning algorithm to automatically identify resting‐state fMRI periods that precede hallucinations versus periods that do not. When applied to whole‐brain fMRI data, state‐of‐the‐art classification methods, such as support vector machines (SVM), yield dense solutions that are difficult to interpret. We proposed to extend the existing sparse classification methods by taking the spatial structure of brain images into account with structured sparsity using the total variation penalty. Based on this approach, we obtained reliable classifying performances associated with interpretable predictive patterns, composed of two clearly identifiable clusters in speech‐related brain regions. The variation in transition‐to‐hallucination functional patterns not only from one patient to another but also from one occurrence to the next (e.g., also depending on the sensory modalities involved) appeared to be the major difficulty when developing effective classifiers. Consequently, second, this article aimed to characterize the variability within the prehallucination patterns using an extension of principal component analysis with spatial constraints. The principal components (PCs) and the associated basis patterns shed light on the intrinsic structures of the variability present in the dataset. Such results are promising in the scope of innovative fMRI‐guided therapy for drug‐resistant hallucinations, such as fMRI‐based neurofeedback.</description><subject>Adult</subject><subject>Auditory Perception - physiology</subject><subject>Brain</subject><subject>Brain - diagnostic imaging</subject><subject>Brain - physiopathology</subject><subject>Brain mapping</subject><subject>Brain Mapping - methods</subject><subject>Classification</subject><subject>Computerized Image Analysis</subject><subject>datoriserad bildanalys</subject><subject>Feedback</subject><subject>Female</subject><subject>Functional magnetic resonance imaging</subject><subject>Hallucinations</subject><subject>Hallucinations - diagnostic imaging</subject><subject>Hallucinations - physiopathology</subject><subject>Human health and pathology</subject><subject>Humans</subject><subject>Image classification</subject><subject>Learning algorithms</subject><subject>Life Sciences</subject><subject>Machine Learning</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Male</subject><subject>Medical innovations</subject><subject>Mental disorders</subject><subject>Neural Pathways - diagnostic imaging</subject><subject>Neural Pathways - physiopathology</subject><subject>Neurofeedback</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Predictions</subject><subject>Principal Component Analysis</subject><subject>Principal components analysis</subject><subject>Psychiatrics and mental health</subject><subject>real-time fMRI</subject><subject>resting-state networks</subject><subject>Schizophrenia</subject><subject>Schizophrenia - diagnostic imaging</subject><subject>Schizophrenia - physiopathology</subject><subject>Sparsity</subject><subject>Spatial analysis</subject><subject>Statistics</subject><subject>Support vector machines</subject><subject>Variability</subject><issn>1065-9471</issn><issn>1097-0193</issn><issn>1097-0193</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1ks-O0zAQxiMEYpeFAy-AInGBQ3Y9duLYF6Sy_ClSERyAq-U4buNVYgc7blXegLfGbcqKXQnJku3xb76Zsb4sew7oEhDCV10zXGLCK_IgOwfE6wIBJw8PZ1oVvKzhLHsSwg1CABWCx9kZ5qSEtM6z31-9bo2ajLO5W-cynbbyeBvlNGlvQz56rRJjN3kn-z4qY49AyM0RMtpOId-ZqcuD6swvN3ZeWyPzGA45g0xBq_NeS28PgZmcfFRTTLXzMEofzLR_mj1ayz7oZ6f9Ivv-4f2362Wx-vLx0_ViVagKKlLUtCQUt7wERuoSla1CoBBmRFe8ZmwtEWtaILpRtMGNRmXNeQsUY67bktaYXGTFrBt2eoyNGL0ZpN8LJ414Z34shPMbEYcooKxoVSb-zcwneNCtSuN62d9Ju_tiTSc2bisoo6lXlgRezwLdvbTlYiWUlgIBYwTXsIXEvjoV8-5n1GESgwlK97202sUggDNOAQiuEvryHnrjorfp6wRGgFlF2JE6FVfeheD1-rYDQOJgHpHMI47mSeyLfye9Jf-6JQFXM7Azvd7_X0ks336eJf8AqOHQ2w</recordid><startdate>201804</startdate><enddate>201804</enddate><creator>de Pierrefeu, Amicie</creator><creator>Fovet, Thomas</creator><creator>Hadj‐Selem, Fouad</creator><creator>Löfstedt, Tommy</creator><creator>Ciuciu, Philippe</creator><creator>Lefebvre, Stephanie</creator><creator>Thomas, Pierre</creator><creator>Lopes, Renaud</creator><creator>Jardri, Renaud</creator><creator>Duchesnay, Edouard</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley</general><general>John Wiley and Sons Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D93</scope><orcidid>https://orcid.org/0000-0001-7119-7646</orcidid><orcidid>https://orcid.org/0000-0002-8459-7742</orcidid><orcidid>https://orcid.org/0000-0003-0077-624X</orcidid><orcidid>https://orcid.org/0000-0002-5231-6010</orcidid><orcidid>https://orcid.org/0000-0002-4073-3490</orcidid><orcidid>https://orcid.org/0000-0003-4596-1502</orcidid><orcidid>https://orcid.org/0000-0002-2425-2283</orcidid><orcidid>https://orcid.org/0000-0001-5374-962X</orcidid></search><sort><creationdate>201804</creationdate><title>Prediction of activation patterns preceding hallucinations in patients with schizophrenia using machine learning with structured sparsity</title><author>de Pierrefeu, Amicie ; Fovet, Thomas ; Hadj‐Selem, Fouad ; Löfstedt, Tommy ; Ciuciu, Philippe ; Lefebvre, Stephanie ; Thomas, Pierre ; Lopes, Renaud ; Jardri, Renaud ; Duchesnay, Edouard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5153-764362d941837404dc01c0283e59788fa08bd13ebc6b2be04799d16229ed46723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adult</topic><topic>Auditory Perception - physiology</topic><topic>Brain</topic><topic>Brain - diagnostic imaging</topic><topic>Brain - physiopathology</topic><topic>Brain mapping</topic><topic>Brain Mapping - methods</topic><topic>Classification</topic><topic>Computerized Image Analysis</topic><topic>datoriserad bildanalys</topic><topic>Feedback</topic><topic>Female</topic><topic>Functional magnetic resonance imaging</topic><topic>Hallucinations</topic><topic>Hallucinations - diagnostic imaging</topic><topic>Hallucinations - physiopathology</topic><topic>Human health and pathology</topic><topic>Humans</topic><topic>Image classification</topic><topic>Learning algorithms</topic><topic>Life Sciences</topic><topic>Machine Learning</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Male</topic><topic>Medical innovations</topic><topic>Mental disorders</topic><topic>Neural Pathways - diagnostic imaging</topic><topic>Neural Pathways - physiopathology</topic><topic>Neurofeedback</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Predictions</topic><topic>Principal Component Analysis</topic><topic>Principal components analysis</topic><topic>Psychiatrics and mental health</topic><topic>real-time fMRI</topic><topic>resting-state networks</topic><topic>Schizophrenia</topic><topic>Schizophrenia - diagnostic imaging</topic><topic>Schizophrenia - physiopathology</topic><topic>Sparsity</topic><topic>Spatial analysis</topic><topic>Statistics</topic><topic>Support vector machines</topic><topic>Variability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Pierrefeu, Amicie</creatorcontrib><creatorcontrib>Fovet, Thomas</creatorcontrib><creatorcontrib>Hadj‐Selem, Fouad</creatorcontrib><creatorcontrib>Löfstedt, Tommy</creatorcontrib><creatorcontrib>Ciuciu, Philippe</creatorcontrib><creatorcontrib>Lefebvre, Stephanie</creatorcontrib><creatorcontrib>Thomas, Pierre</creatorcontrib><creatorcontrib>Lopes, Renaud</creatorcontrib><creatorcontrib>Jardri, Renaud</creatorcontrib><creatorcontrib>Duchesnay, Edouard</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Umeå universitet</collection><jtitle>Human brain mapping</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Pierrefeu, Amicie</au><au>Fovet, Thomas</au><au>Hadj‐Selem, Fouad</au><au>Löfstedt, Tommy</au><au>Ciuciu, Philippe</au><au>Lefebvre, Stephanie</au><au>Thomas, Pierre</au><au>Lopes, Renaud</au><au>Jardri, Renaud</au><au>Duchesnay, Edouard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of activation patterns preceding hallucinations in patients with schizophrenia using machine learning with structured sparsity</atitle><jtitle>Human brain mapping</jtitle><addtitle>Hum Brain Mapp</addtitle><date>2018-04</date><risdate>2018</risdate><volume>39</volume><issue>4</issue><spage>1777</spage><epage>1788</epage><pages>1777-1788</pages><issn>1065-9471</issn><issn>1097-0193</issn><eissn>1097-0193</eissn><abstract>Despite significant progress in the field, the detection of fMRI signal changes during hallucinatory events remains difficult and time‐consuming. This article first proposes a machine‐learning algorithm to automatically identify resting‐state fMRI periods that precede hallucinations versus periods that do not. When applied to whole‐brain fMRI data, state‐of‐the‐art classification methods, such as support vector machines (SVM), yield dense solutions that are difficult to interpret. We proposed to extend the existing sparse classification methods by taking the spatial structure of brain images into account with structured sparsity using the total variation penalty. Based on this approach, we obtained reliable classifying performances associated with interpretable predictive patterns, composed of two clearly identifiable clusters in speech‐related brain regions. The variation in transition‐to‐hallucination functional patterns not only from one patient to another but also from one occurrence to the next (e.g., also depending on the sensory modalities involved) appeared to be the major difficulty when developing effective classifiers. Consequently, second, this article aimed to characterize the variability within the prehallucination patterns using an extension of principal component analysis with spatial constraints. The principal components (PCs) and the associated basis patterns shed light on the intrinsic structures of the variability present in the dataset. Such results are promising in the scope of innovative fMRI‐guided therapy for drug‐resistant hallucinations, such as fMRI‐based neurofeedback.</abstract><cop>United States</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>29341341</pmid><doi>10.1002/hbm.23953</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7119-7646</orcidid><orcidid>https://orcid.org/0000-0002-8459-7742</orcidid><orcidid>https://orcid.org/0000-0003-0077-624X</orcidid><orcidid>https://orcid.org/0000-0002-5231-6010</orcidid><orcidid>https://orcid.org/0000-0002-4073-3490</orcidid><orcidid>https://orcid.org/0000-0003-4596-1502</orcidid><orcidid>https://orcid.org/0000-0002-2425-2283</orcidid><orcidid>https://orcid.org/0000-0001-5374-962X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1065-9471
ispartof Human brain mapping, 2018-04, Vol.39 (4), p.1777-1788
issn 1065-9471
1097-0193
1097-0193
language eng
recordid cdi_swepub_primary_oai_DiVA_org_umu_145654
source PubMed Central
subjects Adult
Auditory Perception - physiology
Brain
Brain - diagnostic imaging
Brain - physiopathology
Brain mapping
Brain Mapping - methods
Classification
Computerized Image Analysis
datoriserad bildanalys
Feedback
Female
Functional magnetic resonance imaging
Hallucinations
Hallucinations - diagnostic imaging
Hallucinations - physiopathology
Human health and pathology
Humans
Image classification
Learning algorithms
Life Sciences
Machine Learning
Magnetic Resonance Imaging - methods
Male
Medical innovations
Mental disorders
Neural Pathways - diagnostic imaging
Neural Pathways - physiopathology
Neurofeedback
Pattern Recognition, Automated - methods
Predictions
Principal Component Analysis
Principal components analysis
Psychiatrics and mental health
real-time fMRI
resting-state networks
Schizophrenia
Schizophrenia - diagnostic imaging
Schizophrenia - physiopathology
Sparsity
Spatial analysis
Statistics
Support vector machines
Variability
title Prediction of activation patterns preceding hallucinations in patients with schizophrenia using machine learning with structured sparsity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A22%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20activation%20patterns%20preceding%20hallucinations%20in%20patients%20with%20schizophrenia%20using%20machine%20learning%20with%20structured%20sparsity&rft.jtitle=Human%20brain%20mapping&rft.au=de%20Pierrefeu,%20Amicie&rft.date=2018-04&rft.volume=39&rft.issue=4&rft.spage=1777&rft.epage=1788&rft.pages=1777-1788&rft.issn=1065-9471&rft.eissn=1097-0193&rft_id=info:doi/10.1002/hbm.23953&rft_dat=%3Cproquest_swepu%3E2012853825%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5153-764362d941837404dc01c0283e59788fa08bd13ebc6b2be04799d16229ed46723%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2012853825&rft_id=info:pmid/29341341&rfr_iscdi=true