Loading…

Discovery of Novel Cinchona‐Alkaloid‐Inspired Oxazatwistane Autophagy Inhibitors

The cinchona alkaloids are a privileged class of natural products and are endowed with diverse bioactivities. However, for compounds with the closely‐related oxazatricyclo[4.4.0.0]decane (“oxazatwistane”) scaffold, which are accessible from cinchonidine and quinidine by means of ring distortion and...

Full description

Saved in:
Bibliographic Details
Published in:Angewandte Chemie International Edition 2017-02, Vol.56 (8), p.2145-2150
Main Authors: Laraia, Luca, Ohsawa, Kosuke, Konstantinidis, Georgios, Robke, Lucas, Wu, Yao‐Wen, Kumar, Kamal, Waldmann, Herbert
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5820-c25d336d653981744b805a209c5a28e0ea3c80355d8c9049a22f83162af0568e3
cites cdi_FETCH-LOGICAL-c5820-c25d336d653981744b805a209c5a28e0ea3c80355d8c9049a22f83162af0568e3
container_end_page 2150
container_issue 8
container_start_page 2145
container_title Angewandte Chemie International Edition
container_volume 56
creator Laraia, Luca
Ohsawa, Kosuke
Konstantinidis, Georgios
Robke, Lucas
Wu, Yao‐Wen
Kumar, Kamal
Waldmann, Herbert
description The cinchona alkaloids are a privileged class of natural products and are endowed with diverse bioactivities. However, for compounds with the closely‐related oxazatricyclo[4.4.0.0]decane (“oxazatwistane”) scaffold, which are accessible from cinchonidine and quinidine by means of ring distortion and modification, biological activity has not been identified. We report the synthesis of an oxazatwistane compound collection through employing state‐of‐the‐art C−H functionalization, and metal‐catalyzed cross‐coupling reactions as key late diversity‐generating steps. Exploration of oxazatwistane bioactivity in phenotypic assays monitoring different cellular processes revealed a novel class of autophagy inhibitors termed oxautins, which, in contrast to the guiding natural products, selectively inhibit autophagy by inhibiting both autophagosome biogenesis and autophagosome maturation. Inhibitors with a twist: Synthesis of a cinchona‐alkaloid‐inspired collection of small molecules through ring‐distortion and further modification of the natural products delivered the novel oxazatwistanes. Unlike the guiding cinchona alkaloids, these compounds inhibit autophagy with an unprecedented mode of action.
doi_str_mv 10.1002/anie.201611670
format article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_umu_157488</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1861572195</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5820-c25d336d653981744b805a209c5a28e0ea3c80355d8c9049a22f83162af0568e3</originalsourceid><addsrcrecordid>eNqF0btu2zAUBmCiSNBc2rVjISBLFzm8iOThKDhpYyBIlrQrQUtUzFQWFVKK6059hDxjnqQ0nDpAhmahzvDpBw9_hD4RPCEY01PTOTuhmAhChMTv0CHhlORMSraX5oKxXAInB-goxrvkAbB4jw4oYCWlgkN0c-Zi5R9sWGe-ya7S1GZT11UL35mnP49l-9O03tVpnHWxd8HW2fUv89sMKxcH09msHAffL8ztOpt1Czd3gw_xA9pvTBvtx-fvMfr-9fxmepFfXn-bTcvLvOJAcV5RXjMmasGZAiKLYg6YG4pVlU6w2BpWAWac11ApXChDaQOMCGoazAVYdozybW5c2X6c6z64pQlr7Y3TZ-5HqX241eNy1ITLAiD5L1vfB38_2jjoZdretm1axI9RExBJUqJ4oiev6J0fQ5e20URhyglTVP5XgeCUbd45qclWVcHHGGyzuyjBetOi3rSody2mHz4_x47zpa13_F9tCagtWLnWrt-I0-XV7Pwl_C_Iyqj4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1865238097</pqid></control><display><type>article</type><title>Discovery of Novel Cinchona‐Alkaloid‐Inspired Oxazatwistane Autophagy Inhibitors</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Laraia, Luca ; Ohsawa, Kosuke ; Konstantinidis, Georgios ; Robke, Lucas ; Wu, Yao‐Wen ; Kumar, Kamal ; Waldmann, Herbert</creator><creatorcontrib>Laraia, Luca ; Ohsawa, Kosuke ; Konstantinidis, Georgios ; Robke, Lucas ; Wu, Yao‐Wen ; Kumar, Kamal ; Waldmann, Herbert</creatorcontrib><description>The cinchona alkaloids are a privileged class of natural products and are endowed with diverse bioactivities. However, for compounds with the closely‐related oxazatricyclo[4.4.0.0]decane (“oxazatwistane”) scaffold, which are accessible from cinchonidine and quinidine by means of ring distortion and modification, biological activity has not been identified. We report the synthesis of an oxazatwistane compound collection through employing state‐of‐the‐art C−H functionalization, and metal‐catalyzed cross‐coupling reactions as key late diversity‐generating steps. Exploration of oxazatwistane bioactivity in phenotypic assays monitoring different cellular processes revealed a novel class of autophagy inhibitors termed oxautins, which, in contrast to the guiding natural products, selectively inhibit autophagy by inhibiting both autophagosome biogenesis and autophagosome maturation. Inhibitors with a twist: Synthesis of a cinchona‐alkaloid‐inspired collection of small molecules through ring‐distortion and further modification of the natural products delivered the novel oxazatwistanes. Unlike the guiding cinchona alkaloids, these compounds inhibit autophagy with an unprecedented mode of action.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>ISSN: 1521-3773</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201611670</identifier><identifier>PMID: 28097798</identifier><identifier>CODEN: ACIEAY</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Alkaloids ; Autophagy ; Biocompatibility ; Biological activity ; Chemical reactions ; computational linguistics ; Coupling (molecular) ; Cross coupling ; datorlingvistik ; Inhibitors ; Maturation ; medicinal chemistry ; Natural products ; Phagocytosis ; Quinidine</subject><ispartof>Angewandte Chemie International Edition, 2017-02, Vol.56 (8), p.2145-2150</ispartof><rights>2017 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2017 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2017 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5820-c25d336d653981744b805a209c5a28e0ea3c80355d8c9049a22f83162af0568e3</citedby><cites>FETCH-LOGICAL-c5820-c25d336d653981744b805a209c5a28e0ea3c80355d8c9049a22f83162af0568e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28097798$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-157488$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Laraia, Luca</creatorcontrib><creatorcontrib>Ohsawa, Kosuke</creatorcontrib><creatorcontrib>Konstantinidis, Georgios</creatorcontrib><creatorcontrib>Robke, Lucas</creatorcontrib><creatorcontrib>Wu, Yao‐Wen</creatorcontrib><creatorcontrib>Kumar, Kamal</creatorcontrib><creatorcontrib>Waldmann, Herbert</creatorcontrib><title>Discovery of Novel Cinchona‐Alkaloid‐Inspired Oxazatwistane Autophagy Inhibitors</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>The cinchona alkaloids are a privileged class of natural products and are endowed with diverse bioactivities. However, for compounds with the closely‐related oxazatricyclo[4.4.0.0]decane (“oxazatwistane”) scaffold, which are accessible from cinchonidine and quinidine by means of ring distortion and modification, biological activity has not been identified. We report the synthesis of an oxazatwistane compound collection through employing state‐of‐the‐art C−H functionalization, and metal‐catalyzed cross‐coupling reactions as key late diversity‐generating steps. Exploration of oxazatwistane bioactivity in phenotypic assays monitoring different cellular processes revealed a novel class of autophagy inhibitors termed oxautins, which, in contrast to the guiding natural products, selectively inhibit autophagy by inhibiting both autophagosome biogenesis and autophagosome maturation. Inhibitors with a twist: Synthesis of a cinchona‐alkaloid‐inspired collection of small molecules through ring‐distortion and further modification of the natural products delivered the novel oxazatwistanes. Unlike the guiding cinchona alkaloids, these compounds inhibit autophagy with an unprecedented mode of action.</description><subject>Alkaloids</subject><subject>Autophagy</subject><subject>Biocompatibility</subject><subject>Biological activity</subject><subject>Chemical reactions</subject><subject>computational linguistics</subject><subject>Coupling (molecular)</subject><subject>Cross coupling</subject><subject>datorlingvistik</subject><subject>Inhibitors</subject><subject>Maturation</subject><subject>medicinal chemistry</subject><subject>Natural products</subject><subject>Phagocytosis</subject><subject>Quinidine</subject><issn>1433-7851</issn><issn>1521-3773</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqF0btu2zAUBmCiSNBc2rVjISBLFzm8iOThKDhpYyBIlrQrQUtUzFQWFVKK6059hDxjnqQ0nDpAhmahzvDpBw9_hD4RPCEY01PTOTuhmAhChMTv0CHhlORMSraX5oKxXAInB-goxrvkAbB4jw4oYCWlgkN0c-Zi5R9sWGe-ya7S1GZT11UL35mnP49l-9O03tVpnHWxd8HW2fUv89sMKxcH09msHAffL8ztOpt1Czd3gw_xA9pvTBvtx-fvMfr-9fxmepFfXn-bTcvLvOJAcV5RXjMmasGZAiKLYg6YG4pVlU6w2BpWAWac11ApXChDaQOMCGoazAVYdozybW5c2X6c6z64pQlr7Y3TZ-5HqX241eNy1ITLAiD5L1vfB38_2jjoZdretm1axI9RExBJUqJ4oiev6J0fQ5e20URhyglTVP5XgeCUbd45qclWVcHHGGyzuyjBetOi3rSody2mHz4_x47zpa13_F9tCagtWLnWrt-I0-XV7Pwl_C_Iyqj4</recordid><startdate>20170213</startdate><enddate>20170213</enddate><creator>Laraia, Luca</creator><creator>Ohsawa, Kosuke</creator><creator>Konstantinidis, Georgios</creator><creator>Robke, Lucas</creator><creator>Wu, Yao‐Wen</creator><creator>Kumar, Kamal</creator><creator>Waldmann, Herbert</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><scope>ADHXS</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>D93</scope><scope>ZZAVC</scope></search><sort><creationdate>20170213</creationdate><title>Discovery of Novel Cinchona‐Alkaloid‐Inspired Oxazatwistane Autophagy Inhibitors</title><author>Laraia, Luca ; Ohsawa, Kosuke ; Konstantinidis, Georgios ; Robke, Lucas ; Wu, Yao‐Wen ; Kumar, Kamal ; Waldmann, Herbert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5820-c25d336d653981744b805a209c5a28e0ea3c80355d8c9049a22f83162af0568e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Alkaloids</topic><topic>Autophagy</topic><topic>Biocompatibility</topic><topic>Biological activity</topic><topic>Chemical reactions</topic><topic>computational linguistics</topic><topic>Coupling (molecular)</topic><topic>Cross coupling</topic><topic>datorlingvistik</topic><topic>Inhibitors</topic><topic>Maturation</topic><topic>medicinal chemistry</topic><topic>Natural products</topic><topic>Phagocytosis</topic><topic>Quinidine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Laraia, Luca</creatorcontrib><creatorcontrib>Ohsawa, Kosuke</creatorcontrib><creatorcontrib>Konstantinidis, Georgios</creatorcontrib><creatorcontrib>Robke, Lucas</creatorcontrib><creatorcontrib>Wu, Yao‐Wen</creatorcontrib><creatorcontrib>Kumar, Kamal</creatorcontrib><creatorcontrib>Waldmann, Herbert</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>SWEPUB Umeå universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Umeå universitet</collection><collection>SwePub Articles full text</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Laraia, Luca</au><au>Ohsawa, Kosuke</au><au>Konstantinidis, Georgios</au><au>Robke, Lucas</au><au>Wu, Yao‐Wen</au><au>Kumar, Kamal</au><au>Waldmann, Herbert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discovery of Novel Cinchona‐Alkaloid‐Inspired Oxazatwistane Autophagy Inhibitors</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2017-02-13</date><risdate>2017</risdate><volume>56</volume><issue>8</issue><spage>2145</spage><epage>2150</epage><pages>2145-2150</pages><issn>1433-7851</issn><issn>1521-3773</issn><eissn>1521-3773</eissn><coden>ACIEAY</coden><abstract>The cinchona alkaloids are a privileged class of natural products and are endowed with diverse bioactivities. However, for compounds with the closely‐related oxazatricyclo[4.4.0.0]decane (“oxazatwistane”) scaffold, which are accessible from cinchonidine and quinidine by means of ring distortion and modification, biological activity has not been identified. We report the synthesis of an oxazatwistane compound collection through employing state‐of‐the‐art C−H functionalization, and metal‐catalyzed cross‐coupling reactions as key late diversity‐generating steps. Exploration of oxazatwistane bioactivity in phenotypic assays monitoring different cellular processes revealed a novel class of autophagy inhibitors termed oxautins, which, in contrast to the guiding natural products, selectively inhibit autophagy by inhibiting both autophagosome biogenesis and autophagosome maturation. Inhibitors with a twist: Synthesis of a cinchona‐alkaloid‐inspired collection of small molecules through ring‐distortion and further modification of the natural products delivered the novel oxazatwistanes. Unlike the guiding cinchona alkaloids, these compounds inhibit autophagy with an unprecedented mode of action.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28097798</pmid><doi>10.1002/anie.201611670</doi><tpages>6</tpages><edition>International ed. in English</edition><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2017-02, Vol.56 (8), p.2145-2150
issn 1433-7851
1521-3773
1521-3773
language eng
recordid cdi_swepub_primary_oai_DiVA_org_umu_157488
source Wiley-Blackwell Read & Publish Collection
subjects Alkaloids
Autophagy
Biocompatibility
Biological activity
Chemical reactions
computational linguistics
Coupling (molecular)
Cross coupling
datorlingvistik
Inhibitors
Maturation
medicinal chemistry
Natural products
Phagocytosis
Quinidine
title Discovery of Novel Cinchona‐Alkaloid‐Inspired Oxazatwistane Autophagy Inhibitors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A04%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discovery%20of%20Novel%20Cinchona%E2%80%90Alkaloid%E2%80%90Inspired%20Oxazatwistane%20Autophagy%20Inhibitors&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Laraia,%20Luca&rft.date=2017-02-13&rft.volume=56&rft.issue=8&rft.spage=2145&rft.epage=2150&rft.pages=2145-2150&rft.issn=1433-7851&rft.eissn=1521-3773&rft.coden=ACIEAY&rft_id=info:doi/10.1002/anie.201611670&rft_dat=%3Cproquest_swepu%3E1861572195%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5820-c25d336d653981744b805a209c5a28e0ea3c80355d8c9049a22f83162af0568e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1865238097&rft_id=info:pmid/28097798&rfr_iscdi=true