Loading…

Elucidating the molecular pathogenesis of familial glioma

In recent years, the molecular characterization of sporadically arising diffuse gliomas has identified recurrent driving alterations and delineated molecularly and clinically distinct subclasses of disease. However, less is known about the molecular nature of gliomas that are familial in origin. To...

Full description

Saved in:
Bibliographic Details
Published in:Cancer research (Chicago, Ill.) Ill.), 2018, Vol.78 (13)
Main Authors: Jacobs, Daniel I., Fukumura, Kazutaka, Bainbridge, Matthew N., Armstrong, Georgina N., Muzny, Donna M., Melin, Beatrice S., Huse, Jason T., Bondy, Melissa L.
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In recent years, the molecular characterization of sporadically arising diffuse gliomas has identified recurrent driving alterations and delineated molecularly and clinically distinct subclasses of disease. However, less is known about the molecular nature of gliomas that are familial in origin. To address this question, we integrated germline and somatic genomic data to characterize the molecular pathogenesis of 20 tumors arising in unrelated individuals with a family history of glioma collected through the Gliogene International Consortium. METHODS: FFPE tumor specimens were sectioned and reviewed to localize neoplastic tissue for DNA extraction. Library preparation, exome plus targeted capture, and paired-end sequencing on the Illumina HiSeq 2000 platform was performed at the Baylor College of Medicine Human Genome Sequencing Center. Single-nucleotide variants and indels were called with respect to germline DNA sequencing data for each case using MuTect2. Copy number profiling was performed on the Illumina HumanOmniExpress BeadChip and analyzed using GenomeStudio v2.0. Genotypes at known glioma risk polymorphisms were determined from germline DNA profiled on the Illumina Infinium OncoArray and rare, predicted deleterious germline mutations were identified from germline whole-exome sequencing data. RESULTS: Tumor exome sequencing was completed at an average read depth of 116X and we detected a median of 54 non-silent somatic mutations per tumor across the 20 tumors profiled. All three molecular subtypes of sporadic glioma were represented, including IDH-mutant, 1p/19q codeleted (n=3), IDH-mutant, 1p/19q intact (n=7), and IDH-wildtype tumors (n=10). Characteristic subtype-specific mutations and copy number alterations (e.g., TP53 and ATRX mutations among IDH-mutant, 1p/19q intact tumors) were observed, and the frequencies of recurrent alterations were comparable to sporadic glioma cases analyzed by The Cancer Genome Atlas. Notably, all 20 cases had alterations in genes regulating telomere length; 17 had acquired mutations in ATRX or the TERT promoter as typically seen in sporadic glioma, while three instead had germline mutations in telomere shelterin complex genes POT1 or TERF2. Frequencies of known common glioma risk alleles were similar to those among sporadic cases and correlations between risk alleles and specific somatic mutations were not observed. CONCLUSIONS: This study illustrates: 1) the complementarity of inherited and acquired alterations in
ISSN:0008-5472
1538-7445
DOI:10.1158/1538-7445.AM2018-1243