Loading…

KBot: A Knowledge Graph Based ChatBot for Natural Language Understanding Over Linked Data

With the rapid progress of the semantic web, a huge amount of structured data has become available on the web in the form of knowledge bases (KBs). Making these data accessible and useful for end-users is one of the main objectives of chatbots over linked data. Building a chatbot over linked data ra...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2020, Vol.8, p.149220-149230
Main Authors: Ait-Mlouk, Addi, Jiang, Lili
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c496t-3a55c3f0619adf0720c120868fc41d669759e2d2df140e3ef934ffc2b76186183
cites cdi_FETCH-LOGICAL-c496t-3a55c3f0619adf0720c120868fc41d669759e2d2df140e3ef934ffc2b76186183
container_end_page 149230
container_issue
container_start_page 149220
container_title IEEE access
container_volume 8
creator Ait-Mlouk, Addi
Jiang, Lili
description With the rapid progress of the semantic web, a huge amount of structured data has become available on the web in the form of knowledge bases (KBs). Making these data accessible and useful for end-users is one of the main objectives of chatbots over linked data. Building a chatbot over linked data raises different challenges, including user queries understanding, multiple knowledge base support, and multilingual aspect. To address these challenges, we first design and develop an architecture to provide an interactive user interface. Secondly, we propose a machine learning approach based on intent classification and natural language understanding to understand user intents and generate SPARQL queries. We especially process a new social network dataset (i.e., myPersonality) and add it to the existing knowledge bases to extend the chatbot capabilities by understanding analytical queries. The system can be extended with a new domain on-demand, flexible, multiple knowledge base, multilingual, and allows intuitive creation and execution of different tasks for an extensive range of topics. Furthermore, evaluation and application cases in the chatbot are provided to show how it facilitates interactive semantic data towards different real application scenarios and showcase the proposed approach for a knowledge graph and data-driven chatbot.
doi_str_mv 10.1109/ACCESS.2020.3016142
format article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_umu_174488</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9165716</ieee_id><doaj_id>oai_doaj_org_article_4341af48ef0f421781af85ba83a828aa</doaj_id><sourcerecordid>2454642650</sourcerecordid><originalsourceid>FETCH-LOGICAL-c496t-3a55c3f0619adf0720c120868fc41d669759e2d2df140e3ef934ffc2b76186183</originalsourceid><addsrcrecordid>eNpVkVtP3DAQhaOqlYqAX8CLJZ6z9fgWh7clXMWqPFAq9cmaje0lyxIvdlLUf4-XIERHlmY8OuezrFMUR0BnALT-MW-a87u7GaOMzjgFBYJ9KfYYqLrkkquvn-bvxWFKa5pL55Ws9oo_N6dhOCFzctOHl42zK0cuI24fyCkmZ0nzgEMWEB8i-YnDGHFDFtivRszC-966mAbsbdevyO1fF8mi6x-z7QwHPCi-edwkd_je94v7i_NfzVW5uL28buaLshW1GkqOUrbcUwU1Wk8rRltgVCvtWwFWqbqStWOWWQ-COu58zYX3LVtWCnQ-fL-4nrg24NpsY_eE8Z8J2Jm3RYgrg3Ho2o0zggtAL7Tz1AsGlc43LZeoOWqmETOrnFjpxW3H5X-0s-73_I02Po0GKiH07u3jSb-N4Xl0aTDrMMY-f9cwIYUSTEmaVXxStTGkFJ3_4AI1uwjNFKHZRWjeI8yuo8nVOec-HDUoWYHir19xlRc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454642650</pqid></control><display><type>article</type><title>KBot: A Knowledge Graph Based ChatBot for Natural Language Understanding Over Linked Data</title><source>IEEE Xplore Open Access Journals</source><creator>Ait-Mlouk, Addi ; Jiang, Lili</creator><creatorcontrib>Ait-Mlouk, Addi ; Jiang, Lili</creatorcontrib><description>With the rapid progress of the semantic web, a huge amount of structured data has become available on the web in the form of knowledge bases (KBs). Making these data accessible and useful for end-users is one of the main objectives of chatbots over linked data. Building a chatbot over linked data raises different challenges, including user queries understanding, multiple knowledge base support, and multilingual aspect. To address these challenges, we first design and develop an architecture to provide an interactive user interface. Secondly, we propose a machine learning approach based on intent classification and natural language understanding to understand user intents and generate SPARQL queries. We especially process a new social network dataset (i.e., myPersonality) and add it to the existing knowledge bases to extend the chatbot capabilities by understanding analytical queries. The system can be extended with a new domain on-demand, flexible, multiple knowledge base, multilingual, and allows intuitive creation and execution of different tasks for an extensive range of topics. Furthermore, evaluation and application cases in the chatbot are provided to show how it facilitates interactive semantic data towards different real application scenarios and showcase the proposed approach for a knowledge graph and data-driven chatbot.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3016142</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Chatbot ; Chatbots ; Computer Science ; datalogi ; Engines ; intent classification ; Knowledge ; Knowledge based systems ; Knowledge bases (artificial intelligence) ; Linked Data ; Machine learning ; Multilingualism ; myPersonality dataset ; Natural language ; natural language understanding ; Natural languages ; Query processing ; Semantic Web ; Semantics ; Social networks ; SPARQL ; Task analysis</subject><ispartof>IEEE access, 2020, Vol.8, p.149220-149230</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c496t-3a55c3f0619adf0720c120868fc41d669759e2d2df140e3ef934ffc2b76186183</citedby><cites>FETCH-LOGICAL-c496t-3a55c3f0619adf0720c120868fc41d669759e2d2df140e3ef934ffc2b76186183</cites><orcidid>0000-0002-7788-3986 ; 0000-0003-0385-9390</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9165716$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,4024,27633,27923,27924,27925,54933</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-174488$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Ait-Mlouk, Addi</creatorcontrib><creatorcontrib>Jiang, Lili</creatorcontrib><title>KBot: A Knowledge Graph Based ChatBot for Natural Language Understanding Over Linked Data</title><title>IEEE access</title><addtitle>Access</addtitle><description>With the rapid progress of the semantic web, a huge amount of structured data has become available on the web in the form of knowledge bases (KBs). Making these data accessible and useful for end-users is one of the main objectives of chatbots over linked data. Building a chatbot over linked data raises different challenges, including user queries understanding, multiple knowledge base support, and multilingual aspect. To address these challenges, we first design and develop an architecture to provide an interactive user interface. Secondly, we propose a machine learning approach based on intent classification and natural language understanding to understand user intents and generate SPARQL queries. We especially process a new social network dataset (i.e., myPersonality) and add it to the existing knowledge bases to extend the chatbot capabilities by understanding analytical queries. The system can be extended with a new domain on-demand, flexible, multiple knowledge base, multilingual, and allows intuitive creation and execution of different tasks for an extensive range of topics. Furthermore, evaluation and application cases in the chatbot are provided to show how it facilitates interactive semantic data towards different real application scenarios and showcase the proposed approach for a knowledge graph and data-driven chatbot.</description><subject>Chatbot</subject><subject>Chatbots</subject><subject>Computer Science</subject><subject>datalogi</subject><subject>Engines</subject><subject>intent classification</subject><subject>Knowledge</subject><subject>Knowledge based systems</subject><subject>Knowledge bases (artificial intelligence)</subject><subject>Linked Data</subject><subject>Machine learning</subject><subject>Multilingualism</subject><subject>myPersonality dataset</subject><subject>Natural language</subject><subject>natural language understanding</subject><subject>Natural languages</subject><subject>Query processing</subject><subject>Semantic Web</subject><subject>Semantics</subject><subject>Social networks</subject><subject>SPARQL</subject><subject>Task analysis</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpVkVtP3DAQhaOqlYqAX8CLJZ6z9fgWh7clXMWqPFAq9cmaje0lyxIvdlLUf4-XIERHlmY8OuezrFMUR0BnALT-MW-a87u7GaOMzjgFBYJ9KfYYqLrkkquvn-bvxWFKa5pL55Ws9oo_N6dhOCFzctOHl42zK0cuI24fyCkmZ0nzgEMWEB8i-YnDGHFDFtivRszC-966mAbsbdevyO1fF8mi6x-z7QwHPCi-edwkd_je94v7i_NfzVW5uL28buaLshW1GkqOUrbcUwU1Wk8rRltgVCvtWwFWqbqStWOWWQ-COu58zYX3LVtWCnQ-fL-4nrg24NpsY_eE8Z8J2Jm3RYgrg3Ho2o0zggtAL7Tz1AsGlc43LZeoOWqmETOrnFjpxW3H5X-0s-73_I02Po0GKiH07u3jSb-N4Xl0aTDrMMY-f9cwIYUSTEmaVXxStTGkFJ3_4AI1uwjNFKHZRWjeI8yuo8nVOec-HDUoWYHir19xlRc</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Ait-Mlouk, Addi</creator><creator>Jiang, Lili</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>ADHXS</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>D93</scope><scope>ZZAVC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7788-3986</orcidid><orcidid>https://orcid.org/0000-0003-0385-9390</orcidid></search><sort><creationdate>2020</creationdate><title>KBot: A Knowledge Graph Based ChatBot for Natural Language Understanding Over Linked Data</title><author>Ait-Mlouk, Addi ; Jiang, Lili</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c496t-3a55c3f0619adf0720c120868fc41d669759e2d2df140e3ef934ffc2b76186183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chatbot</topic><topic>Chatbots</topic><topic>Computer Science</topic><topic>datalogi</topic><topic>Engines</topic><topic>intent classification</topic><topic>Knowledge</topic><topic>Knowledge based systems</topic><topic>Knowledge bases (artificial intelligence)</topic><topic>Linked Data</topic><topic>Machine learning</topic><topic>Multilingualism</topic><topic>myPersonality dataset</topic><topic>Natural language</topic><topic>natural language understanding</topic><topic>Natural languages</topic><topic>Query processing</topic><topic>Semantic Web</topic><topic>Semantics</topic><topic>Social networks</topic><topic>SPARQL</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ait-Mlouk, Addi</creatorcontrib><creatorcontrib>Jiang, Lili</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>SWEPUB Umeå universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Umeå universitet</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ait-Mlouk, Addi</au><au>Jiang, Lili</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>KBot: A Knowledge Graph Based ChatBot for Natural Language Understanding Over Linked Data</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>149220</spage><epage>149230</epage><pages>149220-149230</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>With the rapid progress of the semantic web, a huge amount of structured data has become available on the web in the form of knowledge bases (KBs). Making these data accessible and useful for end-users is one of the main objectives of chatbots over linked data. Building a chatbot over linked data raises different challenges, including user queries understanding, multiple knowledge base support, and multilingual aspect. To address these challenges, we first design and develop an architecture to provide an interactive user interface. Secondly, we propose a machine learning approach based on intent classification and natural language understanding to understand user intents and generate SPARQL queries. We especially process a new social network dataset (i.e., myPersonality) and add it to the existing knowledge bases to extend the chatbot capabilities by understanding analytical queries. The system can be extended with a new domain on-demand, flexible, multiple knowledge base, multilingual, and allows intuitive creation and execution of different tasks for an extensive range of topics. Furthermore, evaluation and application cases in the chatbot are provided to show how it facilitates interactive semantic data towards different real application scenarios and showcase the proposed approach for a knowledge graph and data-driven chatbot.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3016142</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7788-3986</orcidid><orcidid>https://orcid.org/0000-0003-0385-9390</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2020, Vol.8, p.149220-149230
issn 2169-3536
2169-3536
language eng
recordid cdi_swepub_primary_oai_DiVA_org_umu_174488
source IEEE Xplore Open Access Journals
subjects Chatbot
Chatbots
Computer Science
datalogi
Engines
intent classification
Knowledge
Knowledge based systems
Knowledge bases (artificial intelligence)
Linked Data
Machine learning
Multilingualism
myPersonality dataset
Natural language
natural language understanding
Natural languages
Query processing
Semantic Web
Semantics
Social networks
SPARQL
Task analysis
title KBot: A Knowledge Graph Based ChatBot for Natural Language Understanding Over Linked Data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T20%3A15%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=KBot:%20A%20Knowledge%20Graph%20Based%20ChatBot%20for%20Natural%20Language%20Understanding%20Over%20Linked%20Data&rft.jtitle=IEEE%20access&rft.au=Ait-Mlouk,%20Addi&rft.date=2020&rft.volume=8&rft.spage=149220&rft.epage=149230&rft.pages=149220-149230&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3016142&rft_dat=%3Cproquest_swepu%3E2454642650%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c496t-3a55c3f0619adf0720c120868fc41d669759e2d2df140e3ef934ffc2b76186183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2454642650&rft_id=info:pmid/&rft_ieee_id=9165716&rfr_iscdi=true