Loading…
KBot: A Knowledge Graph Based ChatBot for Natural Language Understanding Over Linked Data
With the rapid progress of the semantic web, a huge amount of structured data has become available on the web in the form of knowledge bases (KBs). Making these data accessible and useful for end-users is one of the main objectives of chatbots over linked data. Building a chatbot over linked data ra...
Saved in:
Published in: | IEEE access 2020, Vol.8, p.149220-149230 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c496t-3a55c3f0619adf0720c120868fc41d669759e2d2df140e3ef934ffc2b76186183 |
---|---|
cites | cdi_FETCH-LOGICAL-c496t-3a55c3f0619adf0720c120868fc41d669759e2d2df140e3ef934ffc2b76186183 |
container_end_page | 149230 |
container_issue | |
container_start_page | 149220 |
container_title | IEEE access |
container_volume | 8 |
creator | Ait-Mlouk, Addi Jiang, Lili |
description | With the rapid progress of the semantic web, a huge amount of structured data has become available on the web in the form of knowledge bases (KBs). Making these data accessible and useful for end-users is one of the main objectives of chatbots over linked data. Building a chatbot over linked data raises different challenges, including user queries understanding, multiple knowledge base support, and multilingual aspect. To address these challenges, we first design and develop an architecture to provide an interactive user interface. Secondly, we propose a machine learning approach based on intent classification and natural language understanding to understand user intents and generate SPARQL queries. We especially process a new social network dataset (i.e., myPersonality) and add it to the existing knowledge bases to extend the chatbot capabilities by understanding analytical queries. The system can be extended with a new domain on-demand, flexible, multiple knowledge base, multilingual, and allows intuitive creation and execution of different tasks for an extensive range of topics. Furthermore, evaluation and application cases in the chatbot are provided to show how it facilitates interactive semantic data towards different real application scenarios and showcase the proposed approach for a knowledge graph and data-driven chatbot. |
doi_str_mv | 10.1109/ACCESS.2020.3016142 |
format | article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_umu_174488</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9165716</ieee_id><doaj_id>oai_doaj_org_article_4341af48ef0f421781af85ba83a828aa</doaj_id><sourcerecordid>2454642650</sourcerecordid><originalsourceid>FETCH-LOGICAL-c496t-3a55c3f0619adf0720c120868fc41d669759e2d2df140e3ef934ffc2b76186183</originalsourceid><addsrcrecordid>eNpVkVtP3DAQhaOqlYqAX8CLJZ6z9fgWh7clXMWqPFAq9cmaje0lyxIvdlLUf4-XIERHlmY8OuezrFMUR0BnALT-MW-a87u7GaOMzjgFBYJ9KfYYqLrkkquvn-bvxWFKa5pL55Ws9oo_N6dhOCFzctOHl42zK0cuI24fyCkmZ0nzgEMWEB8i-YnDGHFDFtivRszC-966mAbsbdevyO1fF8mi6x-z7QwHPCi-edwkd_je94v7i_NfzVW5uL28buaLshW1GkqOUrbcUwU1Wk8rRltgVCvtWwFWqbqStWOWWQ-COu58zYX3LVtWCnQ-fL-4nrg24NpsY_eE8Z8J2Jm3RYgrg3Ho2o0zggtAL7Tz1AsGlc43LZeoOWqmETOrnFjpxW3H5X-0s-73_I02Po0GKiH07u3jSb-N4Xl0aTDrMMY-f9cwIYUSTEmaVXxStTGkFJ3_4AI1uwjNFKHZRWjeI8yuo8nVOec-HDUoWYHir19xlRc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2454642650</pqid></control><display><type>article</type><title>KBot: A Knowledge Graph Based ChatBot for Natural Language Understanding Over Linked Data</title><source>IEEE Xplore Open Access Journals</source><creator>Ait-Mlouk, Addi ; Jiang, Lili</creator><creatorcontrib>Ait-Mlouk, Addi ; Jiang, Lili</creatorcontrib><description>With the rapid progress of the semantic web, a huge amount of structured data has become available on the web in the form of knowledge bases (KBs). Making these data accessible and useful for end-users is one of the main objectives of chatbots over linked data. Building a chatbot over linked data raises different challenges, including user queries understanding, multiple knowledge base support, and multilingual aspect. To address these challenges, we first design and develop an architecture to provide an interactive user interface. Secondly, we propose a machine learning approach based on intent classification and natural language understanding to understand user intents and generate SPARQL queries. We especially process a new social network dataset (i.e., myPersonality) and add it to the existing knowledge bases to extend the chatbot capabilities by understanding analytical queries. The system can be extended with a new domain on-demand, flexible, multiple knowledge base, multilingual, and allows intuitive creation and execution of different tasks for an extensive range of topics. Furthermore, evaluation and application cases in the chatbot are provided to show how it facilitates interactive semantic data towards different real application scenarios and showcase the proposed approach for a knowledge graph and data-driven chatbot.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2020.3016142</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Chatbot ; Chatbots ; Computer Science ; datalogi ; Engines ; intent classification ; Knowledge ; Knowledge based systems ; Knowledge bases (artificial intelligence) ; Linked Data ; Machine learning ; Multilingualism ; myPersonality dataset ; Natural language ; natural language understanding ; Natural languages ; Query processing ; Semantic Web ; Semantics ; Social networks ; SPARQL ; Task analysis</subject><ispartof>IEEE access, 2020, Vol.8, p.149220-149230</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c496t-3a55c3f0619adf0720c120868fc41d669759e2d2df140e3ef934ffc2b76186183</citedby><cites>FETCH-LOGICAL-c496t-3a55c3f0619adf0720c120868fc41d669759e2d2df140e3ef934ffc2b76186183</cites><orcidid>0000-0002-7788-3986 ; 0000-0003-0385-9390</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9165716$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,4024,27633,27923,27924,27925,54933</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-174488$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Ait-Mlouk, Addi</creatorcontrib><creatorcontrib>Jiang, Lili</creatorcontrib><title>KBot: A Knowledge Graph Based ChatBot for Natural Language Understanding Over Linked Data</title><title>IEEE access</title><addtitle>Access</addtitle><description>With the rapid progress of the semantic web, a huge amount of structured data has become available on the web in the form of knowledge bases (KBs). Making these data accessible and useful for end-users is one of the main objectives of chatbots over linked data. Building a chatbot over linked data raises different challenges, including user queries understanding, multiple knowledge base support, and multilingual aspect. To address these challenges, we first design and develop an architecture to provide an interactive user interface. Secondly, we propose a machine learning approach based on intent classification and natural language understanding to understand user intents and generate SPARQL queries. We especially process a new social network dataset (i.e., myPersonality) and add it to the existing knowledge bases to extend the chatbot capabilities by understanding analytical queries. The system can be extended with a new domain on-demand, flexible, multiple knowledge base, multilingual, and allows intuitive creation and execution of different tasks for an extensive range of topics. Furthermore, evaluation and application cases in the chatbot are provided to show how it facilitates interactive semantic data towards different real application scenarios and showcase the proposed approach for a knowledge graph and data-driven chatbot.</description><subject>Chatbot</subject><subject>Chatbots</subject><subject>Computer Science</subject><subject>datalogi</subject><subject>Engines</subject><subject>intent classification</subject><subject>Knowledge</subject><subject>Knowledge based systems</subject><subject>Knowledge bases (artificial intelligence)</subject><subject>Linked Data</subject><subject>Machine learning</subject><subject>Multilingualism</subject><subject>myPersonality dataset</subject><subject>Natural language</subject><subject>natural language understanding</subject><subject>Natural languages</subject><subject>Query processing</subject><subject>Semantic Web</subject><subject>Semantics</subject><subject>Social networks</subject><subject>SPARQL</subject><subject>Task analysis</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpVkVtP3DAQhaOqlYqAX8CLJZ6z9fgWh7clXMWqPFAq9cmaje0lyxIvdlLUf4-XIERHlmY8OuezrFMUR0BnALT-MW-a87u7GaOMzjgFBYJ9KfYYqLrkkquvn-bvxWFKa5pL55Ws9oo_N6dhOCFzctOHl42zK0cuI24fyCkmZ0nzgEMWEB8i-YnDGHFDFtivRszC-966mAbsbdevyO1fF8mi6x-z7QwHPCi-edwkd_je94v7i_NfzVW5uL28buaLshW1GkqOUrbcUwU1Wk8rRltgVCvtWwFWqbqStWOWWQ-COu58zYX3LVtWCnQ-fL-4nrg24NpsY_eE8Z8J2Jm3RYgrg3Ho2o0zggtAL7Tz1AsGlc43LZeoOWqmETOrnFjpxW3H5X-0s-73_I02Po0GKiH07u3jSb-N4Xl0aTDrMMY-f9cwIYUSTEmaVXxStTGkFJ3_4AI1uwjNFKHZRWjeI8yuo8nVOec-HDUoWYHir19xlRc</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Ait-Mlouk, Addi</creator><creator>Jiang, Lili</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>ADHXS</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>D93</scope><scope>ZZAVC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7788-3986</orcidid><orcidid>https://orcid.org/0000-0003-0385-9390</orcidid></search><sort><creationdate>2020</creationdate><title>KBot: A Knowledge Graph Based ChatBot for Natural Language Understanding Over Linked Data</title><author>Ait-Mlouk, Addi ; Jiang, Lili</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c496t-3a55c3f0619adf0720c120868fc41d669759e2d2df140e3ef934ffc2b76186183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chatbot</topic><topic>Chatbots</topic><topic>Computer Science</topic><topic>datalogi</topic><topic>Engines</topic><topic>intent classification</topic><topic>Knowledge</topic><topic>Knowledge based systems</topic><topic>Knowledge bases (artificial intelligence)</topic><topic>Linked Data</topic><topic>Machine learning</topic><topic>Multilingualism</topic><topic>myPersonality dataset</topic><topic>Natural language</topic><topic>natural language understanding</topic><topic>Natural languages</topic><topic>Query processing</topic><topic>Semantic Web</topic><topic>Semantics</topic><topic>Social networks</topic><topic>SPARQL</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ait-Mlouk, Addi</creatorcontrib><creatorcontrib>Jiang, Lili</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>SWEPUB Umeå universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Umeå universitet</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ait-Mlouk, Addi</au><au>Jiang, Lili</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>KBot: A Knowledge Graph Based ChatBot for Natural Language Understanding Over Linked Data</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2020</date><risdate>2020</risdate><volume>8</volume><spage>149220</spage><epage>149230</epage><pages>149220-149230</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>With the rapid progress of the semantic web, a huge amount of structured data has become available on the web in the form of knowledge bases (KBs). Making these data accessible and useful for end-users is one of the main objectives of chatbots over linked data. Building a chatbot over linked data raises different challenges, including user queries understanding, multiple knowledge base support, and multilingual aspect. To address these challenges, we first design and develop an architecture to provide an interactive user interface. Secondly, we propose a machine learning approach based on intent classification and natural language understanding to understand user intents and generate SPARQL queries. We especially process a new social network dataset (i.e., myPersonality) and add it to the existing knowledge bases to extend the chatbot capabilities by understanding analytical queries. The system can be extended with a new domain on-demand, flexible, multiple knowledge base, multilingual, and allows intuitive creation and execution of different tasks for an extensive range of topics. Furthermore, evaluation and application cases in the chatbot are provided to show how it facilitates interactive semantic data towards different real application scenarios and showcase the proposed approach for a knowledge graph and data-driven chatbot.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2020.3016142</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7788-3986</orcidid><orcidid>https://orcid.org/0000-0003-0385-9390</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2020, Vol.8, p.149220-149230 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_swepub_primary_oai_DiVA_org_umu_174488 |
source | IEEE Xplore Open Access Journals |
subjects | Chatbot Chatbots Computer Science datalogi Engines intent classification Knowledge Knowledge based systems Knowledge bases (artificial intelligence) Linked Data Machine learning Multilingualism myPersonality dataset Natural language natural language understanding Natural languages Query processing Semantic Web Semantics Social networks SPARQL Task analysis |
title | KBot: A Knowledge Graph Based ChatBot for Natural Language Understanding Over Linked Data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T20%3A15%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=KBot:%20A%20Knowledge%20Graph%20Based%20ChatBot%20for%20Natural%20Language%20Understanding%20Over%20Linked%20Data&rft.jtitle=IEEE%20access&rft.au=Ait-Mlouk,%20Addi&rft.date=2020&rft.volume=8&rft.spage=149220&rft.epage=149230&rft.pages=149220-149230&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2020.3016142&rft_dat=%3Cproquest_swepu%3E2454642650%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c496t-3a55c3f0619adf0720c120868fc41d669759e2d2df140e3ef934ffc2b76186183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2454642650&rft_id=info:pmid/&rft_ieee_id=9165716&rfr_iscdi=true |