Loading…

Incorporating multiple sets of eQTL weights into gene‐by‐environment interaction analysis identifies novel susceptibility loci for pancreatic cancer

It is of great scientific interest to identify interactions between genetic variants and environmental exposures that may modify the risk of complex diseases. However, larger sample sizes are usually required to detect gene‐by‐environment interaction (G × E) than required to detect genetic main asso...

Full description

Saved in:
Bibliographic Details
Published in:Genetic epidemiology 2020-11, Vol.44 (8), p.880-892
Main Authors: Yang, Tianzhong, Tang, Hongwei, Risch, Harvey A., Olson, Sarah H., Peterson, Gloria, Bracci, Paige M., Gallinger, Steven, Hung, Rayjean J., Neale, Rachel E., Scelo, Ghislaine, Duell, Eric J., Kurtz, Robert C., Khaw, Kay‐Tee, Severi, Gianluca, Sund, Malin, Wareham, Nick, Amos, Christopher I., Li, Donghui, Wei, Peng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c4458-88dc41a735397ae9af9b101db4a210abff21ce99ddc2b75ab07fc5791d9431753
container_end_page 892
container_issue 8
container_start_page 880
container_title Genetic epidemiology
container_volume 44
creator Yang, Tianzhong
Tang, Hongwei
Risch, Harvey A.
Olson, Sarah H.
Peterson, Gloria
Bracci, Paige M.
Gallinger, Steven
Hung, Rayjean J.
Neale, Rachel E.
Scelo, Ghislaine
Duell, Eric J.
Kurtz, Robert C.
Khaw, Kay‐Tee
Severi, Gianluca
Sund, Malin
Wareham, Nick
Amos, Christopher I.
Li, Donghui
Wei, Peng
description It is of great scientific interest to identify interactions between genetic variants and environmental exposures that may modify the risk of complex diseases. However, larger sample sizes are usually required to detect gene‐by‐environment interaction (G × E) than required to detect genetic main association effects. To boost the statistical power and improve the understanding of the underlying molecular mechanisms, we incorporate functional genomics information, specifically, expression quantitative trait loci (eQTLs), into a data‐adaptive G × E test, called aGEw. This test adaptively chooses the best eQTL weights from multiple tissues and provides an extra layer of weighting at the genetic variant level. Extensive simulations show that the aGEw test can control the Type 1 error rate, and the power is resilient to the inclusion of neutral variants and noninformative external weights. We applied the proposed aGEw test to the Pancreatic Cancer Case–Control Consortium (discovery cohort of 3,585 cases and 3,482 controls) and the PanScan II genome‐wide association study data (replication cohort of 2,021 cases and 2,105 controls) with smoking as the exposure of interest. Two novel putative smoking‐related pancreatic cancer susceptibility genes, TRIP10 and KDM3A, were identified. The aGEw test is implemented in an R package aGE.
doi_str_mv 10.1002/gepi.22348
format article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_umu_174631</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2458725804</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4458-88dc41a735397ae9af9b101db4a210abff21ce99ddc2b75ab07fc5791d9431753</originalsourceid><addsrcrecordid>eNp9kcFu1DAQhi1ERZfChQdAlrghpbUdp44vSFVb2pVWAqTC1XKcSeoqsYOd7Co3HoEjz8eT4G1KRS9cbI_mm39m_CP0hpJjSgg7aWGwx4zlvHyGVpTIMmNMsOdoRQSnGcllcYhexnhHCKVcFi_QYc6EkCxnK_Rr7YwPgw96tK7F_dSNdugARxgj9g2GLzcbvAPb3qbYutHjFhz8_vGzmtMBbmuDdz24cZ-EoM1ovcPa6W6ONlXUKWUbCxE7v4UOxykaGEZb2c6OM-68sbjxAQ_amQBpCINNekJ4hQ4a3UV4_XAfoa8fL2_Or7PNp6v1-dkmM5wXZVaWteFUi7zIpdAgdSMrSmhdcc0o0VXTMGpAyro2rBKFrohoTCEkrSXPqSjyI5QtunEHw1SpIdheh1l5bdWF_XamfGjV1E-KCn6a08R_WPgE91CbtF_Q3ZOypxlnb1Xrt0qcprayTALvHgSC_z5BHNWdn0L6sKhY2kiwoiQ8Ue8XygQfY4DmsQMlau-62ruu7l1P8Nt_Z3pE_9qcALoAO9vB_B8pdXX5eb2I_gEDCL_E</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2458725804</pqid></control><display><type>article</type><title>Incorporating multiple sets of eQTL weights into gene‐by‐environment interaction analysis identifies novel susceptibility loci for pancreatic cancer</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Yang, Tianzhong ; Tang, Hongwei ; Risch, Harvey A. ; Olson, Sarah H. ; Peterson, Gloria ; Bracci, Paige M. ; Gallinger, Steven ; Hung, Rayjean J. ; Neale, Rachel E. ; Scelo, Ghislaine ; Duell, Eric J. ; Kurtz, Robert C. ; Khaw, Kay‐Tee ; Severi, Gianluca ; Sund, Malin ; Wareham, Nick ; Amos, Christopher I. ; Li, Donghui ; Wei, Peng</creator><creatorcontrib>Yang, Tianzhong ; Tang, Hongwei ; Risch, Harvey A. ; Olson, Sarah H. ; Peterson, Gloria ; Bracci, Paige M. ; Gallinger, Steven ; Hung, Rayjean J. ; Neale, Rachel E. ; Scelo, Ghislaine ; Duell, Eric J. ; Kurtz, Robert C. ; Khaw, Kay‐Tee ; Severi, Gianluca ; Sund, Malin ; Wareham, Nick ; Amos, Christopher I. ; Li, Donghui ; Wei, Peng</creatorcontrib><description>It is of great scientific interest to identify interactions between genetic variants and environmental exposures that may modify the risk of complex diseases. However, larger sample sizes are usually required to detect gene‐by‐environment interaction (G × E) than required to detect genetic main association effects. To boost the statistical power and improve the understanding of the underlying molecular mechanisms, we incorporate functional genomics information, specifically, expression quantitative trait loci (eQTLs), into a data‐adaptive G × E test, called aGEw. This test adaptively chooses the best eQTL weights from multiple tissues and provides an extra layer of weighting at the genetic variant level. Extensive simulations show that the aGEw test can control the Type 1 error rate, and the power is resilient to the inclusion of neutral variants and noninformative external weights. We applied the proposed aGEw test to the Pancreatic Cancer Case–Control Consortium (discovery cohort of 3,585 cases and 3,482 controls) and the PanScan II genome‐wide association study data (replication cohort of 2,021 cases and 2,105 controls) with smoking as the exposure of interest. Two novel putative smoking‐related pancreatic cancer susceptibility genes, TRIP10 and KDM3A, were identified. The aGEw test is implemented in an R package aGE.</description><identifier>ISSN: 0741-0395</identifier><identifier>ISSN: 1098-2272</identifier><identifier>EISSN: 1098-2272</identifier><identifier>DOI: 10.1002/gepi.22348</identifier><identifier>PMID: 32779232</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Case-Control Studies ; Cohort Studies ; Computer Simulation ; Data Interpretation, Statistical ; Data-adaptive association testing ; eQTL ; Gene Expression Regulation ; gene-by-environment interaction ; Gene-Environment Interaction ; Genetic diversity ; Genetic Predisposition to Disease ; Genome-wide association studies ; Genome-Wide Association Study ; Humans ; Models, Genetic ; Molecular modelling ; multiple functional weights ; Pancreatic cancer ; Pancreatic Neoplasms - genetics ; Polymorphism, Single Nucleotide - genetics ; PrediXCan ; Quantitative trait loci ; Quantitative Trait Loci - genetics ; Smoking ; Smoking - genetics</subject><ispartof>Genetic epidemiology, 2020-11, Vol.44 (8), p.880-892</ispartof><rights>2020 Wiley Periodicals LLC</rights><rights>2020 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4458-88dc41a735397ae9af9b101db4a210abff21ce99ddc2b75ab07fc5791d9431753</cites><orcidid>0000-0001-7758-6116</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32779232$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-174631$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Tianzhong</creatorcontrib><creatorcontrib>Tang, Hongwei</creatorcontrib><creatorcontrib>Risch, Harvey A.</creatorcontrib><creatorcontrib>Olson, Sarah H.</creatorcontrib><creatorcontrib>Peterson, Gloria</creatorcontrib><creatorcontrib>Bracci, Paige M.</creatorcontrib><creatorcontrib>Gallinger, Steven</creatorcontrib><creatorcontrib>Hung, Rayjean J.</creatorcontrib><creatorcontrib>Neale, Rachel E.</creatorcontrib><creatorcontrib>Scelo, Ghislaine</creatorcontrib><creatorcontrib>Duell, Eric J.</creatorcontrib><creatorcontrib>Kurtz, Robert C.</creatorcontrib><creatorcontrib>Khaw, Kay‐Tee</creatorcontrib><creatorcontrib>Severi, Gianluca</creatorcontrib><creatorcontrib>Sund, Malin</creatorcontrib><creatorcontrib>Wareham, Nick</creatorcontrib><creatorcontrib>Amos, Christopher I.</creatorcontrib><creatorcontrib>Li, Donghui</creatorcontrib><creatorcontrib>Wei, Peng</creatorcontrib><title>Incorporating multiple sets of eQTL weights into gene‐by‐environment interaction analysis identifies novel susceptibility loci for pancreatic cancer</title><title>Genetic epidemiology</title><addtitle>Genet Epidemiol</addtitle><description>It is of great scientific interest to identify interactions between genetic variants and environmental exposures that may modify the risk of complex diseases. However, larger sample sizes are usually required to detect gene‐by‐environment interaction (G × E) than required to detect genetic main association effects. To boost the statistical power and improve the understanding of the underlying molecular mechanisms, we incorporate functional genomics information, specifically, expression quantitative trait loci (eQTLs), into a data‐adaptive G × E test, called aGEw. This test adaptively chooses the best eQTL weights from multiple tissues and provides an extra layer of weighting at the genetic variant level. Extensive simulations show that the aGEw test can control the Type 1 error rate, and the power is resilient to the inclusion of neutral variants and noninformative external weights. We applied the proposed aGEw test to the Pancreatic Cancer Case–Control Consortium (discovery cohort of 3,585 cases and 3,482 controls) and the PanScan II genome‐wide association study data (replication cohort of 2,021 cases and 2,105 controls) with smoking as the exposure of interest. Two novel putative smoking‐related pancreatic cancer susceptibility genes, TRIP10 and KDM3A, were identified. The aGEw test is implemented in an R package aGE.</description><subject>Case-Control Studies</subject><subject>Cohort Studies</subject><subject>Computer Simulation</subject><subject>Data Interpretation, Statistical</subject><subject>Data-adaptive association testing</subject><subject>eQTL</subject><subject>Gene Expression Regulation</subject><subject>gene-by-environment interaction</subject><subject>Gene-Environment Interaction</subject><subject>Genetic diversity</subject><subject>Genetic Predisposition to Disease</subject><subject>Genome-wide association studies</subject><subject>Genome-Wide Association Study</subject><subject>Humans</subject><subject>Models, Genetic</subject><subject>Molecular modelling</subject><subject>multiple functional weights</subject><subject>Pancreatic cancer</subject><subject>Pancreatic Neoplasms - genetics</subject><subject>Polymorphism, Single Nucleotide - genetics</subject><subject>PrediXCan</subject><subject>Quantitative trait loci</subject><subject>Quantitative Trait Loci - genetics</subject><subject>Smoking</subject><subject>Smoking - genetics</subject><issn>0741-0395</issn><issn>1098-2272</issn><issn>1098-2272</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kcFu1DAQhi1ERZfChQdAlrghpbUdp44vSFVb2pVWAqTC1XKcSeoqsYOd7Co3HoEjz8eT4G1KRS9cbI_mm39m_CP0hpJjSgg7aWGwx4zlvHyGVpTIMmNMsOdoRQSnGcllcYhexnhHCKVcFi_QYc6EkCxnK_Rr7YwPgw96tK7F_dSNdugARxgj9g2GLzcbvAPb3qbYutHjFhz8_vGzmtMBbmuDdz24cZ-EoM1ovcPa6W6ONlXUKWUbCxE7v4UOxykaGEZb2c6OM-68sbjxAQ_amQBpCINNekJ4hQ4a3UV4_XAfoa8fL2_Or7PNp6v1-dkmM5wXZVaWteFUi7zIpdAgdSMrSmhdcc0o0VXTMGpAyro2rBKFrohoTCEkrSXPqSjyI5QtunEHw1SpIdheh1l5bdWF_XamfGjV1E-KCn6a08R_WPgE91CbtF_Q3ZOypxlnb1Xrt0qcprayTALvHgSC_z5BHNWdn0L6sKhY2kiwoiQ8Ue8XygQfY4DmsQMlau-62ruu7l1P8Nt_Z3pE_9qcALoAO9vB_B8pdXX5eb2I_gEDCL_E</recordid><startdate>202011</startdate><enddate>202011</enddate><creator>Yang, Tianzhong</creator><creator>Tang, Hongwei</creator><creator>Risch, Harvey A.</creator><creator>Olson, Sarah H.</creator><creator>Peterson, Gloria</creator><creator>Bracci, Paige M.</creator><creator>Gallinger, Steven</creator><creator>Hung, Rayjean J.</creator><creator>Neale, Rachel E.</creator><creator>Scelo, Ghislaine</creator><creator>Duell, Eric J.</creator><creator>Kurtz, Robert C.</creator><creator>Khaw, Kay‐Tee</creator><creator>Severi, Gianluca</creator><creator>Sund, Malin</creator><creator>Wareham, Nick</creator><creator>Amos, Christopher I.</creator><creator>Li, Donghui</creator><creator>Wei, Peng</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D93</scope><orcidid>https://orcid.org/0000-0001-7758-6116</orcidid></search><sort><creationdate>202011</creationdate><title>Incorporating multiple sets of eQTL weights into gene‐by‐environment interaction analysis identifies novel susceptibility loci for pancreatic cancer</title><author>Yang, Tianzhong ; Tang, Hongwei ; Risch, Harvey A. ; Olson, Sarah H. ; Peterson, Gloria ; Bracci, Paige M. ; Gallinger, Steven ; Hung, Rayjean J. ; Neale, Rachel E. ; Scelo, Ghislaine ; Duell, Eric J. ; Kurtz, Robert C. ; Khaw, Kay‐Tee ; Severi, Gianluca ; Sund, Malin ; Wareham, Nick ; Amos, Christopher I. ; Li, Donghui ; Wei, Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4458-88dc41a735397ae9af9b101db4a210abff21ce99ddc2b75ab07fc5791d9431753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Case-Control Studies</topic><topic>Cohort Studies</topic><topic>Computer Simulation</topic><topic>Data Interpretation, Statistical</topic><topic>Data-adaptive association testing</topic><topic>eQTL</topic><topic>Gene Expression Regulation</topic><topic>gene-by-environment interaction</topic><topic>Gene-Environment Interaction</topic><topic>Genetic diversity</topic><topic>Genetic Predisposition to Disease</topic><topic>Genome-wide association studies</topic><topic>Genome-Wide Association Study</topic><topic>Humans</topic><topic>Models, Genetic</topic><topic>Molecular modelling</topic><topic>multiple functional weights</topic><topic>Pancreatic cancer</topic><topic>Pancreatic Neoplasms - genetics</topic><topic>Polymorphism, Single Nucleotide - genetics</topic><topic>PrediXCan</topic><topic>Quantitative trait loci</topic><topic>Quantitative Trait Loci - genetics</topic><topic>Smoking</topic><topic>Smoking - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Tianzhong</creatorcontrib><creatorcontrib>Tang, Hongwei</creatorcontrib><creatorcontrib>Risch, Harvey A.</creatorcontrib><creatorcontrib>Olson, Sarah H.</creatorcontrib><creatorcontrib>Peterson, Gloria</creatorcontrib><creatorcontrib>Bracci, Paige M.</creatorcontrib><creatorcontrib>Gallinger, Steven</creatorcontrib><creatorcontrib>Hung, Rayjean J.</creatorcontrib><creatorcontrib>Neale, Rachel E.</creatorcontrib><creatorcontrib>Scelo, Ghislaine</creatorcontrib><creatorcontrib>Duell, Eric J.</creatorcontrib><creatorcontrib>Kurtz, Robert C.</creatorcontrib><creatorcontrib>Khaw, Kay‐Tee</creatorcontrib><creatorcontrib>Severi, Gianluca</creatorcontrib><creatorcontrib>Sund, Malin</creatorcontrib><creatorcontrib>Wareham, Nick</creatorcontrib><creatorcontrib>Amos, Christopher I.</creatorcontrib><creatorcontrib>Li, Donghui</creatorcontrib><creatorcontrib>Wei, Peng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Umeå universitet</collection><jtitle>Genetic epidemiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Tianzhong</au><au>Tang, Hongwei</au><au>Risch, Harvey A.</au><au>Olson, Sarah H.</au><au>Peterson, Gloria</au><au>Bracci, Paige M.</au><au>Gallinger, Steven</au><au>Hung, Rayjean J.</au><au>Neale, Rachel E.</au><au>Scelo, Ghislaine</au><au>Duell, Eric J.</au><au>Kurtz, Robert C.</au><au>Khaw, Kay‐Tee</au><au>Severi, Gianluca</au><au>Sund, Malin</au><au>Wareham, Nick</au><au>Amos, Christopher I.</au><au>Li, Donghui</au><au>Wei, Peng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Incorporating multiple sets of eQTL weights into gene‐by‐environment interaction analysis identifies novel susceptibility loci for pancreatic cancer</atitle><jtitle>Genetic epidemiology</jtitle><addtitle>Genet Epidemiol</addtitle><date>2020-11</date><risdate>2020</risdate><volume>44</volume><issue>8</issue><spage>880</spage><epage>892</epage><pages>880-892</pages><issn>0741-0395</issn><issn>1098-2272</issn><eissn>1098-2272</eissn><abstract>It is of great scientific interest to identify interactions between genetic variants and environmental exposures that may modify the risk of complex diseases. However, larger sample sizes are usually required to detect gene‐by‐environment interaction (G × E) than required to detect genetic main association effects. To boost the statistical power and improve the understanding of the underlying molecular mechanisms, we incorporate functional genomics information, specifically, expression quantitative trait loci (eQTLs), into a data‐adaptive G × E test, called aGEw. This test adaptively chooses the best eQTL weights from multiple tissues and provides an extra layer of weighting at the genetic variant level. Extensive simulations show that the aGEw test can control the Type 1 error rate, and the power is resilient to the inclusion of neutral variants and noninformative external weights. We applied the proposed aGEw test to the Pancreatic Cancer Case–Control Consortium (discovery cohort of 3,585 cases and 3,482 controls) and the PanScan II genome‐wide association study data (replication cohort of 2,021 cases and 2,105 controls) with smoking as the exposure of interest. Two novel putative smoking‐related pancreatic cancer susceptibility genes, TRIP10 and KDM3A, were identified. The aGEw test is implemented in an R package aGE.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32779232</pmid><doi>10.1002/gepi.22348</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7758-6116</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0741-0395
ispartof Genetic epidemiology, 2020-11, Vol.44 (8), p.880-892
issn 0741-0395
1098-2272
1098-2272
language eng
recordid cdi_swepub_primary_oai_DiVA_org_umu_174631
source Wiley-Blackwell Read & Publish Collection
subjects Case-Control Studies
Cohort Studies
Computer Simulation
Data Interpretation, Statistical
Data-adaptive association testing
eQTL
Gene Expression Regulation
gene-by-environment interaction
Gene-Environment Interaction
Genetic diversity
Genetic Predisposition to Disease
Genome-wide association studies
Genome-Wide Association Study
Humans
Models, Genetic
Molecular modelling
multiple functional weights
Pancreatic cancer
Pancreatic Neoplasms - genetics
Polymorphism, Single Nucleotide - genetics
PrediXCan
Quantitative trait loci
Quantitative Trait Loci - genetics
Smoking
Smoking - genetics
title Incorporating multiple sets of eQTL weights into gene‐by‐environment interaction analysis identifies novel susceptibility loci for pancreatic cancer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T04%3A26%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Incorporating%20multiple%20sets%20of%20eQTL%20weights%20into%20gene%E2%80%90by%E2%80%90environment%20interaction%20analysis%20identifies%20novel%20susceptibility%20loci%20for%20pancreatic%20cancer&rft.jtitle=Genetic%20epidemiology&rft.au=Yang,%20Tianzhong&rft.date=2020-11&rft.volume=44&rft.issue=8&rft.spage=880&rft.epage=892&rft.pages=880-892&rft.issn=0741-0395&rft.eissn=1098-2272&rft_id=info:doi/10.1002/gepi.22348&rft_dat=%3Cproquest_swepu%3E2458725804%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4458-88dc41a735397ae9af9b101db4a210abff21ce99ddc2b75ab07fc5791d9431753%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2458725804&rft_id=info:pmid/32779232&rfr_iscdi=true