Loading…
Incorporating multiple sets of eQTL weights into gene‐by‐environment interaction analysis identifies novel susceptibility loci for pancreatic cancer
It is of great scientific interest to identify interactions between genetic variants and environmental exposures that may modify the risk of complex diseases. However, larger sample sizes are usually required to detect gene‐by‐environment interaction (G × E) than required to detect genetic main asso...
Saved in:
Published in: | Genetic epidemiology 2020-11, Vol.44 (8), p.880-892 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c4458-88dc41a735397ae9af9b101db4a210abff21ce99ddc2b75ab07fc5791d9431753 |
container_end_page | 892 |
container_issue | 8 |
container_start_page | 880 |
container_title | Genetic epidemiology |
container_volume | 44 |
creator | Yang, Tianzhong Tang, Hongwei Risch, Harvey A. Olson, Sarah H. Peterson, Gloria Bracci, Paige M. Gallinger, Steven Hung, Rayjean J. Neale, Rachel E. Scelo, Ghislaine Duell, Eric J. Kurtz, Robert C. Khaw, Kay‐Tee Severi, Gianluca Sund, Malin Wareham, Nick Amos, Christopher I. Li, Donghui Wei, Peng |
description | It is of great scientific interest to identify interactions between genetic variants and environmental exposures that may modify the risk of complex diseases. However, larger sample sizes are usually required to detect gene‐by‐environment interaction (G × E) than required to detect genetic main association effects. To boost the statistical power and improve the understanding of the underlying molecular mechanisms, we incorporate functional genomics information, specifically, expression quantitative trait loci (eQTLs), into a data‐adaptive G × E test, called aGEw. This test adaptively chooses the best eQTL weights from multiple tissues and provides an extra layer of weighting at the genetic variant level. Extensive simulations show that the aGEw test can control the Type 1 error rate, and the power is resilient to the inclusion of neutral variants and noninformative external weights. We applied the proposed aGEw test to the Pancreatic Cancer Case–Control Consortium (discovery cohort of 3,585 cases and 3,482 controls) and the PanScan II genome‐wide association study data (replication cohort of 2,021 cases and 2,105 controls) with smoking as the exposure of interest. Two novel putative smoking‐related pancreatic cancer susceptibility genes, TRIP10 and KDM3A, were identified. The aGEw test is implemented in an R package aGE. |
doi_str_mv | 10.1002/gepi.22348 |
format | article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_umu_174631</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2458725804</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4458-88dc41a735397ae9af9b101db4a210abff21ce99ddc2b75ab07fc5791d9431753</originalsourceid><addsrcrecordid>eNp9kcFu1DAQhi1ERZfChQdAlrghpbUdp44vSFVb2pVWAqTC1XKcSeoqsYOd7Co3HoEjz8eT4G1KRS9cbI_mm39m_CP0hpJjSgg7aWGwx4zlvHyGVpTIMmNMsOdoRQSnGcllcYhexnhHCKVcFi_QYc6EkCxnK_Rr7YwPgw96tK7F_dSNdugARxgj9g2GLzcbvAPb3qbYutHjFhz8_vGzmtMBbmuDdz24cZ-EoM1ovcPa6W6ONlXUKWUbCxE7v4UOxykaGEZb2c6OM-68sbjxAQ_amQBpCINNekJ4hQ4a3UV4_XAfoa8fL2_Or7PNp6v1-dkmM5wXZVaWteFUi7zIpdAgdSMrSmhdcc0o0VXTMGpAyro2rBKFrohoTCEkrSXPqSjyI5QtunEHw1SpIdheh1l5bdWF_XamfGjV1E-KCn6a08R_WPgE91CbtF_Q3ZOypxlnb1Xrt0qcprayTALvHgSC_z5BHNWdn0L6sKhY2kiwoiQ8Ue8XygQfY4DmsQMlau-62ruu7l1P8Nt_Z3pE_9qcALoAO9vB_B8pdXX5eb2I_gEDCL_E</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2458725804</pqid></control><display><type>article</type><title>Incorporating multiple sets of eQTL weights into gene‐by‐environment interaction analysis identifies novel susceptibility loci for pancreatic cancer</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Yang, Tianzhong ; Tang, Hongwei ; Risch, Harvey A. ; Olson, Sarah H. ; Peterson, Gloria ; Bracci, Paige M. ; Gallinger, Steven ; Hung, Rayjean J. ; Neale, Rachel E. ; Scelo, Ghislaine ; Duell, Eric J. ; Kurtz, Robert C. ; Khaw, Kay‐Tee ; Severi, Gianluca ; Sund, Malin ; Wareham, Nick ; Amos, Christopher I. ; Li, Donghui ; Wei, Peng</creator><creatorcontrib>Yang, Tianzhong ; Tang, Hongwei ; Risch, Harvey A. ; Olson, Sarah H. ; Peterson, Gloria ; Bracci, Paige M. ; Gallinger, Steven ; Hung, Rayjean J. ; Neale, Rachel E. ; Scelo, Ghislaine ; Duell, Eric J. ; Kurtz, Robert C. ; Khaw, Kay‐Tee ; Severi, Gianluca ; Sund, Malin ; Wareham, Nick ; Amos, Christopher I. ; Li, Donghui ; Wei, Peng</creatorcontrib><description>It is of great scientific interest to identify interactions between genetic variants and environmental exposures that may modify the risk of complex diseases. However, larger sample sizes are usually required to detect gene‐by‐environment interaction (G × E) than required to detect genetic main association effects. To boost the statistical power and improve the understanding of the underlying molecular mechanisms, we incorporate functional genomics information, specifically, expression quantitative trait loci (eQTLs), into a data‐adaptive G × E test, called aGEw. This test adaptively chooses the best eQTL weights from multiple tissues and provides an extra layer of weighting at the genetic variant level. Extensive simulations show that the aGEw test can control the Type 1 error rate, and the power is resilient to the inclusion of neutral variants and noninformative external weights. We applied the proposed aGEw test to the Pancreatic Cancer Case–Control Consortium (discovery cohort of 3,585 cases and 3,482 controls) and the PanScan II genome‐wide association study data (replication cohort of 2,021 cases and 2,105 controls) with smoking as the exposure of interest. Two novel putative smoking‐related pancreatic cancer susceptibility genes, TRIP10 and KDM3A, were identified. The aGEw test is implemented in an R package aGE.</description><identifier>ISSN: 0741-0395</identifier><identifier>ISSN: 1098-2272</identifier><identifier>EISSN: 1098-2272</identifier><identifier>DOI: 10.1002/gepi.22348</identifier><identifier>PMID: 32779232</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Case-Control Studies ; Cohort Studies ; Computer Simulation ; Data Interpretation, Statistical ; Data-adaptive association testing ; eQTL ; Gene Expression Regulation ; gene-by-environment interaction ; Gene-Environment Interaction ; Genetic diversity ; Genetic Predisposition to Disease ; Genome-wide association studies ; Genome-Wide Association Study ; Humans ; Models, Genetic ; Molecular modelling ; multiple functional weights ; Pancreatic cancer ; Pancreatic Neoplasms - genetics ; Polymorphism, Single Nucleotide - genetics ; PrediXCan ; Quantitative trait loci ; Quantitative Trait Loci - genetics ; Smoking ; Smoking - genetics</subject><ispartof>Genetic epidemiology, 2020-11, Vol.44 (8), p.880-892</ispartof><rights>2020 Wiley Periodicals LLC</rights><rights>2020 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4458-88dc41a735397ae9af9b101db4a210abff21ce99ddc2b75ab07fc5791d9431753</cites><orcidid>0000-0001-7758-6116</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32779232$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-174631$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Tianzhong</creatorcontrib><creatorcontrib>Tang, Hongwei</creatorcontrib><creatorcontrib>Risch, Harvey A.</creatorcontrib><creatorcontrib>Olson, Sarah H.</creatorcontrib><creatorcontrib>Peterson, Gloria</creatorcontrib><creatorcontrib>Bracci, Paige M.</creatorcontrib><creatorcontrib>Gallinger, Steven</creatorcontrib><creatorcontrib>Hung, Rayjean J.</creatorcontrib><creatorcontrib>Neale, Rachel E.</creatorcontrib><creatorcontrib>Scelo, Ghislaine</creatorcontrib><creatorcontrib>Duell, Eric J.</creatorcontrib><creatorcontrib>Kurtz, Robert C.</creatorcontrib><creatorcontrib>Khaw, Kay‐Tee</creatorcontrib><creatorcontrib>Severi, Gianluca</creatorcontrib><creatorcontrib>Sund, Malin</creatorcontrib><creatorcontrib>Wareham, Nick</creatorcontrib><creatorcontrib>Amos, Christopher I.</creatorcontrib><creatorcontrib>Li, Donghui</creatorcontrib><creatorcontrib>Wei, Peng</creatorcontrib><title>Incorporating multiple sets of eQTL weights into gene‐by‐environment interaction analysis identifies novel susceptibility loci for pancreatic cancer</title><title>Genetic epidemiology</title><addtitle>Genet Epidemiol</addtitle><description>It is of great scientific interest to identify interactions between genetic variants and environmental exposures that may modify the risk of complex diseases. However, larger sample sizes are usually required to detect gene‐by‐environment interaction (G × E) than required to detect genetic main association effects. To boost the statistical power and improve the understanding of the underlying molecular mechanisms, we incorporate functional genomics information, specifically, expression quantitative trait loci (eQTLs), into a data‐adaptive G × E test, called aGEw. This test adaptively chooses the best eQTL weights from multiple tissues and provides an extra layer of weighting at the genetic variant level. Extensive simulations show that the aGEw test can control the Type 1 error rate, and the power is resilient to the inclusion of neutral variants and noninformative external weights. We applied the proposed aGEw test to the Pancreatic Cancer Case–Control Consortium (discovery cohort of 3,585 cases and 3,482 controls) and the PanScan II genome‐wide association study data (replication cohort of 2,021 cases and 2,105 controls) with smoking as the exposure of interest. Two novel putative smoking‐related pancreatic cancer susceptibility genes, TRIP10 and KDM3A, were identified. The aGEw test is implemented in an R package aGE.</description><subject>Case-Control Studies</subject><subject>Cohort Studies</subject><subject>Computer Simulation</subject><subject>Data Interpretation, Statistical</subject><subject>Data-adaptive association testing</subject><subject>eQTL</subject><subject>Gene Expression Regulation</subject><subject>gene-by-environment interaction</subject><subject>Gene-Environment Interaction</subject><subject>Genetic diversity</subject><subject>Genetic Predisposition to Disease</subject><subject>Genome-wide association studies</subject><subject>Genome-Wide Association Study</subject><subject>Humans</subject><subject>Models, Genetic</subject><subject>Molecular modelling</subject><subject>multiple functional weights</subject><subject>Pancreatic cancer</subject><subject>Pancreatic Neoplasms - genetics</subject><subject>Polymorphism, Single Nucleotide - genetics</subject><subject>PrediXCan</subject><subject>Quantitative trait loci</subject><subject>Quantitative Trait Loci - genetics</subject><subject>Smoking</subject><subject>Smoking - genetics</subject><issn>0741-0395</issn><issn>1098-2272</issn><issn>1098-2272</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kcFu1DAQhi1ERZfChQdAlrghpbUdp44vSFVb2pVWAqTC1XKcSeoqsYOd7Co3HoEjz8eT4G1KRS9cbI_mm39m_CP0hpJjSgg7aWGwx4zlvHyGVpTIMmNMsOdoRQSnGcllcYhexnhHCKVcFi_QYc6EkCxnK_Rr7YwPgw96tK7F_dSNdugARxgj9g2GLzcbvAPb3qbYutHjFhz8_vGzmtMBbmuDdz24cZ-EoM1ovcPa6W6ONlXUKWUbCxE7v4UOxykaGEZb2c6OM-68sbjxAQ_amQBpCINNekJ4hQ4a3UV4_XAfoa8fL2_Or7PNp6v1-dkmM5wXZVaWteFUi7zIpdAgdSMrSmhdcc0o0VXTMGpAyro2rBKFrohoTCEkrSXPqSjyI5QtunEHw1SpIdheh1l5bdWF_XamfGjV1E-KCn6a08R_WPgE91CbtF_Q3ZOypxlnb1Xrt0qcprayTALvHgSC_z5BHNWdn0L6sKhY2kiwoiQ8Ue8XygQfY4DmsQMlau-62ruu7l1P8Nt_Z3pE_9qcALoAO9vB_B8pdXX5eb2I_gEDCL_E</recordid><startdate>202011</startdate><enddate>202011</enddate><creator>Yang, Tianzhong</creator><creator>Tang, Hongwei</creator><creator>Risch, Harvey A.</creator><creator>Olson, Sarah H.</creator><creator>Peterson, Gloria</creator><creator>Bracci, Paige M.</creator><creator>Gallinger, Steven</creator><creator>Hung, Rayjean J.</creator><creator>Neale, Rachel E.</creator><creator>Scelo, Ghislaine</creator><creator>Duell, Eric J.</creator><creator>Kurtz, Robert C.</creator><creator>Khaw, Kay‐Tee</creator><creator>Severi, Gianluca</creator><creator>Sund, Malin</creator><creator>Wareham, Nick</creator><creator>Amos, Christopher I.</creator><creator>Li, Donghui</creator><creator>Wei, Peng</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D93</scope><orcidid>https://orcid.org/0000-0001-7758-6116</orcidid></search><sort><creationdate>202011</creationdate><title>Incorporating multiple sets of eQTL weights into gene‐by‐environment interaction analysis identifies novel susceptibility loci for pancreatic cancer</title><author>Yang, Tianzhong ; Tang, Hongwei ; Risch, Harvey A. ; Olson, Sarah H. ; Peterson, Gloria ; Bracci, Paige M. ; Gallinger, Steven ; Hung, Rayjean J. ; Neale, Rachel E. ; Scelo, Ghislaine ; Duell, Eric J. ; Kurtz, Robert C. ; Khaw, Kay‐Tee ; Severi, Gianluca ; Sund, Malin ; Wareham, Nick ; Amos, Christopher I. ; Li, Donghui ; Wei, Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4458-88dc41a735397ae9af9b101db4a210abff21ce99ddc2b75ab07fc5791d9431753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Case-Control Studies</topic><topic>Cohort Studies</topic><topic>Computer Simulation</topic><topic>Data Interpretation, Statistical</topic><topic>Data-adaptive association testing</topic><topic>eQTL</topic><topic>Gene Expression Regulation</topic><topic>gene-by-environment interaction</topic><topic>Gene-Environment Interaction</topic><topic>Genetic diversity</topic><topic>Genetic Predisposition to Disease</topic><topic>Genome-wide association studies</topic><topic>Genome-Wide Association Study</topic><topic>Humans</topic><topic>Models, Genetic</topic><topic>Molecular modelling</topic><topic>multiple functional weights</topic><topic>Pancreatic cancer</topic><topic>Pancreatic Neoplasms - genetics</topic><topic>Polymorphism, Single Nucleotide - genetics</topic><topic>PrediXCan</topic><topic>Quantitative trait loci</topic><topic>Quantitative Trait Loci - genetics</topic><topic>Smoking</topic><topic>Smoking - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Tianzhong</creatorcontrib><creatorcontrib>Tang, Hongwei</creatorcontrib><creatorcontrib>Risch, Harvey A.</creatorcontrib><creatorcontrib>Olson, Sarah H.</creatorcontrib><creatorcontrib>Peterson, Gloria</creatorcontrib><creatorcontrib>Bracci, Paige M.</creatorcontrib><creatorcontrib>Gallinger, Steven</creatorcontrib><creatorcontrib>Hung, Rayjean J.</creatorcontrib><creatorcontrib>Neale, Rachel E.</creatorcontrib><creatorcontrib>Scelo, Ghislaine</creatorcontrib><creatorcontrib>Duell, Eric J.</creatorcontrib><creatorcontrib>Kurtz, Robert C.</creatorcontrib><creatorcontrib>Khaw, Kay‐Tee</creatorcontrib><creatorcontrib>Severi, Gianluca</creatorcontrib><creatorcontrib>Sund, Malin</creatorcontrib><creatorcontrib>Wareham, Nick</creatorcontrib><creatorcontrib>Amos, Christopher I.</creatorcontrib><creatorcontrib>Li, Donghui</creatorcontrib><creatorcontrib>Wei, Peng</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Umeå universitet</collection><jtitle>Genetic epidemiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Tianzhong</au><au>Tang, Hongwei</au><au>Risch, Harvey A.</au><au>Olson, Sarah H.</au><au>Peterson, Gloria</au><au>Bracci, Paige M.</au><au>Gallinger, Steven</au><au>Hung, Rayjean J.</au><au>Neale, Rachel E.</au><au>Scelo, Ghislaine</au><au>Duell, Eric J.</au><au>Kurtz, Robert C.</au><au>Khaw, Kay‐Tee</au><au>Severi, Gianluca</au><au>Sund, Malin</au><au>Wareham, Nick</au><au>Amos, Christopher I.</au><au>Li, Donghui</au><au>Wei, Peng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Incorporating multiple sets of eQTL weights into gene‐by‐environment interaction analysis identifies novel susceptibility loci for pancreatic cancer</atitle><jtitle>Genetic epidemiology</jtitle><addtitle>Genet Epidemiol</addtitle><date>2020-11</date><risdate>2020</risdate><volume>44</volume><issue>8</issue><spage>880</spage><epage>892</epage><pages>880-892</pages><issn>0741-0395</issn><issn>1098-2272</issn><eissn>1098-2272</eissn><abstract>It is of great scientific interest to identify interactions between genetic variants and environmental exposures that may modify the risk of complex diseases. However, larger sample sizes are usually required to detect gene‐by‐environment interaction (G × E) than required to detect genetic main association effects. To boost the statistical power and improve the understanding of the underlying molecular mechanisms, we incorporate functional genomics information, specifically, expression quantitative trait loci (eQTLs), into a data‐adaptive G × E test, called aGEw. This test adaptively chooses the best eQTL weights from multiple tissues and provides an extra layer of weighting at the genetic variant level. Extensive simulations show that the aGEw test can control the Type 1 error rate, and the power is resilient to the inclusion of neutral variants and noninformative external weights. We applied the proposed aGEw test to the Pancreatic Cancer Case–Control Consortium (discovery cohort of 3,585 cases and 3,482 controls) and the PanScan II genome‐wide association study data (replication cohort of 2,021 cases and 2,105 controls) with smoking as the exposure of interest. Two novel putative smoking‐related pancreatic cancer susceptibility genes, TRIP10 and KDM3A, were identified. The aGEw test is implemented in an R package aGE.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32779232</pmid><doi>10.1002/gepi.22348</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-7758-6116</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0741-0395 |
ispartof | Genetic epidemiology, 2020-11, Vol.44 (8), p.880-892 |
issn | 0741-0395 1098-2272 1098-2272 |
language | eng |
recordid | cdi_swepub_primary_oai_DiVA_org_umu_174631 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Case-Control Studies Cohort Studies Computer Simulation Data Interpretation, Statistical Data-adaptive association testing eQTL Gene Expression Regulation gene-by-environment interaction Gene-Environment Interaction Genetic diversity Genetic Predisposition to Disease Genome-wide association studies Genome-Wide Association Study Humans Models, Genetic Molecular modelling multiple functional weights Pancreatic cancer Pancreatic Neoplasms - genetics Polymorphism, Single Nucleotide - genetics PrediXCan Quantitative trait loci Quantitative Trait Loci - genetics Smoking Smoking - genetics |
title | Incorporating multiple sets of eQTL weights into gene‐by‐environment interaction analysis identifies novel susceptibility loci for pancreatic cancer |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T04%3A26%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Incorporating%20multiple%20sets%20of%20eQTL%20weights%20into%20gene%E2%80%90by%E2%80%90environment%20interaction%20analysis%20identifies%20novel%20susceptibility%20loci%20for%20pancreatic%20cancer&rft.jtitle=Genetic%20epidemiology&rft.au=Yang,%20Tianzhong&rft.date=2020-11&rft.volume=44&rft.issue=8&rft.spage=880&rft.epage=892&rft.pages=880-892&rft.issn=0741-0395&rft.eissn=1098-2272&rft_id=info:doi/10.1002/gepi.22348&rft_dat=%3Cproquest_swepu%3E2458725804%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4458-88dc41a735397ae9af9b101db4a210abff21ce99ddc2b75ab07fc5791d9431753%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2458725804&rft_id=info:pmid/32779232&rfr_iscdi=true |