Loading…

HAI-Proactive: Development of an Automated Surveillance System for Healthcare-Associated Infections in Sweden

Background: Healthcare-associated infection (HAI) surveillance is essential for most infection prevention programs and continuous epidemiological data can be used to inform healthcare personal, allocate resources, and evaluate interventions to prevent HAIs. Many HAI surveillance systems today are ba...

Full description

Saved in:
Bibliographic Details
Published in:Infection control and hospital epidemiology 2020-10, Vol.41 (S1), p.s39-s39
Main Authors: Naucler, Pontus, Werff, Suzanne D. van der, Valik, John, Ward, Logan, Ternhag, Anders, Tanushi, Hideyuki, Mougkou, Aikaterini, Sparrelid, Elda, Mogensen, Mads, Henriksson, Aron, Dalianis, Hercules, Pickering, Brian, Herasevich, Vitaly, Johansson, Anders, Thiman, Emil
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background: Healthcare-associated infection (HAI) surveillance is essential for most infection prevention programs and continuous epidemiological data can be used to inform healthcare personal, allocate resources, and evaluate interventions to prevent HAIs. Many HAI surveillance systems today are based on time-consuming and resource-intensive manual reviews of patient records. The objective of HAI-proactive, a Swedish triple-helix innovation project, is to develop and implement a fully automated HAI surveillance system based on electronic health record data. Furthermore, the project aims to develop machine-learning–based screening algorithms for early prediction of HAI at the individual patient level. Methods: The project is performed with support from Sweden’s Innovation Agency in collaboration among academic, health, and industry partners. Development of rule-based and machine-learning algorithms is performed within a research database, which consists of all electronic health record data from patients admitted to the Karolinska University Hospital. Natural language processing is used for processing free-text medical notes. To validate algorithm performance, manual annotation was performed based on international HAI definitions from the European Center for Disease Prevention and Control, Centers for Disease Control and Prevention, and Sepsis-3 criteria. Currently, the project is building a platform for real-time data access to implement the algorithms within Region Stockholm. Results: The project has developed a rule-based surveillance algorithm for sepsis that continuously monitors patients admitted to the hospital, with a sensitivity of 0.89 (95% CI, 0.85–0.93), a specificity of 0.99 (0.98–0.99), a positive predictive value of 0.88 (0.83–0.93), and a negative predictive value of 0.99 (0.98–0.99). The healthcare-associated urinary tract infection surveillance algorithm, which is based on free-text analysis and negations to define symptoms, had a sensitivity of 0.73 (0.66–0.80) and a positive predictive value of 0.68 (0.61–0.75). The sensitivity and positive predictive value of an algorithm based on significant bacterial growth in urine culture only was 0.99 (0.97–1.00) and 0.39 (0.34–0.44), respectively. The surveillance system detected differences in incidences between hospital wards and over time. Development of surveillance algorithms for pneumonia, catheter-related infections and Clostridioides difficile infections, as well as machine-learning–based
ISSN:0899-823X
1559-6834
1559-6834
DOI:10.1017/ice.2020.519