Loading…

Dynamic Connection between Enzymatic Catalysis and Collective Protein Motions

Enzymes employ a wide range of protein motions to achieve efficient catalysis of chemical reactions. While the role of collective protein motions in substrate binding, product release, and regulation of enzymatic activity is generally understood, their roles in catalytic steps per se remain uncertai...

Full description

Saved in:
Bibliographic Details
Published in:Biochemistry (Easton) 2021-07, Vol.60 (28), p.2246-2258
Main Authors: Ojeda-May, Pedro, Mushtaq, Ameeq UI, Rogne, Per, Verma, Apoorv, Ovchinnikov, Victor, Grundström, Christin, Dulko-Smith, Beata, Sauer, Uwe H., Wolf-Watz, Magnus, Nam, Kwangho
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a483t-d2ed21afb1a5b00dc3f3561994bf6da5155adcaf28c1020b28af4d5ee691a0323
cites cdi_FETCH-LOGICAL-a483t-d2ed21afb1a5b00dc3f3561994bf6da5155adcaf28c1020b28af4d5ee691a0323
container_end_page 2258
container_issue 28
container_start_page 2246
container_title Biochemistry (Easton)
container_volume 60
creator Ojeda-May, Pedro
Mushtaq, Ameeq UI
Rogne, Per
Verma, Apoorv
Ovchinnikov, Victor
Grundström, Christin
Dulko-Smith, Beata
Sauer, Uwe H.
Wolf-Watz, Magnus
Nam, Kwangho
description Enzymes employ a wide range of protein motions to achieve efficient catalysis of chemical reactions. While the role of collective protein motions in substrate binding, product release, and regulation of enzymatic activity is generally understood, their roles in catalytic steps per se remain uncertain. Here, molecular dynamics simulations, enzyme kinetics, X-ray crystallography, and nuclear magnetic resonance spectroscopy are combined to elucidate the catalytic mechanism of adenylate kinase and to delineate the roles of catalytic residues in catalysis and the conformational change in the enzyme. This study reveals that the motions in the active site, which occur on a time scale of picoseconds to nanoseconds, link the catalytic reaction to the slow conformational dynamics of the enzyme by modulating the free energy landscapes of subdomain motions. In particular, substantial conformational rearrangement occurs in the active site following the catalytic reaction. This rearrangement not only affects the reaction barrier but also promotes a more open conformation of the enzyme after the reaction, which then results in an accelerated opening of the enzyme compared to that of the reactant state. The results illustrate a linkage between enzymatic catalysis and collective protein motions, whereby the disparate time scales between the two processes are bridged by a cascade of intermediate-scale motion of catalytic residues modulating the free energy landscapes of the catalytic and conformational change processes.
doi_str_mv 10.1021/acs.biochem.1c00221
format article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_umu_187197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2550627276</sourcerecordid><originalsourceid>FETCH-LOGICAL-a483t-d2ed21afb1a5b00dc3f3561994bf6da5155adcaf28c1020b28af4d5ee691a0323</originalsourceid><addsrcrecordid>eNp9kUtP3DAURq2qCKbAL6hUZckmw7UT57GphAb6kECwALbWjXMDRokNdgIafn0dZorKpivLuuf7_DiMfeWw5CD4MeqwbIzT9zQsuQYQgn9iCy4FpHldy89sAQBFKuoC9tiXEB7iNocy32V7WS4kVMAX7OJ0bXEwOlk5a0mPxtmkofGFyCZn9nU94DgPccR-HUxI0LYR7fsZfabkyruRjE0u3JwMB2ynwz7Q4XbdZzc_zq5Xv9Lzy5-_VyfnKeZVNqatoFZw7BqOsgFoddZlsuB1nTdd0aLkUmKrsROVji-FRlTY5a0kKmqOkIlsn6Wb3vBCj1OjHr0Z0K-VQ6NOze2Jcv5OTcOkeFXyuoz89w0f4YFaTXb02H-IfZxYc6_u3LOqRF3mZRELjrYF3j1NFEY1mKCp79GSm4ISUkIhSvGGZhtUexeCp-79GA5qFqeiOLUVp7biYurbvzd8z_w1FYHjDTCnH9zkbfzg_1b-AaihqYQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550627276</pqid></control><display><type>article</type><title>Dynamic Connection between Enzymatic Catalysis and Collective Protein Motions</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Ojeda-May, Pedro ; Mushtaq, Ameeq UI ; Rogne, Per ; Verma, Apoorv ; Ovchinnikov, Victor ; Grundström, Christin ; Dulko-Smith, Beata ; Sauer, Uwe H. ; Wolf-Watz, Magnus ; Nam, Kwangho</creator><creatorcontrib>Ojeda-May, Pedro ; Mushtaq, Ameeq UI ; Rogne, Per ; Verma, Apoorv ; Ovchinnikov, Victor ; Grundström, Christin ; Dulko-Smith, Beata ; Sauer, Uwe H. ; Wolf-Watz, Magnus ; Nam, Kwangho</creatorcontrib><description>Enzymes employ a wide range of protein motions to achieve efficient catalysis of chemical reactions. While the role of collective protein motions in substrate binding, product release, and regulation of enzymatic activity is generally understood, their roles in catalytic steps per se remain uncertain. Here, molecular dynamics simulations, enzyme kinetics, X-ray crystallography, and nuclear magnetic resonance spectroscopy are combined to elucidate the catalytic mechanism of adenylate kinase and to delineate the roles of catalytic residues in catalysis and the conformational change in the enzyme. This study reveals that the motions in the active site, which occur on a time scale of picoseconds to nanoseconds, link the catalytic reaction to the slow conformational dynamics of the enzyme by modulating the free energy landscapes of subdomain motions. In particular, substantial conformational rearrangement occurs in the active site following the catalytic reaction. This rearrangement not only affects the reaction barrier but also promotes a more open conformation of the enzyme after the reaction, which then results in an accelerated opening of the enzyme compared to that of the reactant state. The results illustrate a linkage between enzymatic catalysis and collective protein motions, whereby the disparate time scales between the two processes are bridged by a cascade of intermediate-scale motion of catalytic residues modulating the free energy landscapes of the catalytic and conformational change processes.</description><identifier>ISSN: 0006-2960</identifier><identifier>ISSN: 1520-4995</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/acs.biochem.1c00221</identifier><identifier>PMID: 34250801</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Adenylate Kinase - chemistry ; Catalytic Domain ; Crystallography, X-Ray ; Escherichia coli - chemistry ; Escherichia coli - enzymology ; Escherichia coli Proteins - chemistry ; Molecular Dynamics Simulation ; Protein Conformation</subject><ispartof>Biochemistry (Easton), 2021-07, Vol.60 (28), p.2246-2258</ispartof><rights>2021 The Authors. Published by American Chemical Society</rights><rights>2021 The Authors. Published by American Chemical Society 2021 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a483t-d2ed21afb1a5b00dc3f3561994bf6da5155adcaf28c1020b28af4d5ee691a0323</citedby><cites>FETCH-LOGICAL-a483t-d2ed21afb1a5b00dc3f3561994bf6da5155adcaf28c1020b28af4d5ee691a0323</cites><orcidid>0000-0003-0723-7839 ; 0000-0002-9098-7974</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34250801$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-187197$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Ojeda-May, Pedro</creatorcontrib><creatorcontrib>Mushtaq, Ameeq UI</creatorcontrib><creatorcontrib>Rogne, Per</creatorcontrib><creatorcontrib>Verma, Apoorv</creatorcontrib><creatorcontrib>Ovchinnikov, Victor</creatorcontrib><creatorcontrib>Grundström, Christin</creatorcontrib><creatorcontrib>Dulko-Smith, Beata</creatorcontrib><creatorcontrib>Sauer, Uwe H.</creatorcontrib><creatorcontrib>Wolf-Watz, Magnus</creatorcontrib><creatorcontrib>Nam, Kwangho</creatorcontrib><title>Dynamic Connection between Enzymatic Catalysis and Collective Protein Motions</title><title>Biochemistry (Easton)</title><addtitle>Biochemistry</addtitle><description>Enzymes employ a wide range of protein motions to achieve efficient catalysis of chemical reactions. While the role of collective protein motions in substrate binding, product release, and regulation of enzymatic activity is generally understood, their roles in catalytic steps per se remain uncertain. Here, molecular dynamics simulations, enzyme kinetics, X-ray crystallography, and nuclear magnetic resonance spectroscopy are combined to elucidate the catalytic mechanism of adenylate kinase and to delineate the roles of catalytic residues in catalysis and the conformational change in the enzyme. This study reveals that the motions in the active site, which occur on a time scale of picoseconds to nanoseconds, link the catalytic reaction to the slow conformational dynamics of the enzyme by modulating the free energy landscapes of subdomain motions. In particular, substantial conformational rearrangement occurs in the active site following the catalytic reaction. This rearrangement not only affects the reaction barrier but also promotes a more open conformation of the enzyme after the reaction, which then results in an accelerated opening of the enzyme compared to that of the reactant state. The results illustrate a linkage between enzymatic catalysis and collective protein motions, whereby the disparate time scales between the two processes are bridged by a cascade of intermediate-scale motion of catalytic residues modulating the free energy landscapes of the catalytic and conformational change processes.</description><subject>Adenylate Kinase - chemistry</subject><subject>Catalytic Domain</subject><subject>Crystallography, X-Ray</subject><subject>Escherichia coli - chemistry</subject><subject>Escherichia coli - enzymology</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Molecular Dynamics Simulation</subject><subject>Protein Conformation</subject><issn>0006-2960</issn><issn>1520-4995</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kUtP3DAURq2qCKbAL6hUZckmw7UT57GphAb6kECwALbWjXMDRokNdgIafn0dZorKpivLuuf7_DiMfeWw5CD4MeqwbIzT9zQsuQYQgn9iCy4FpHldy89sAQBFKuoC9tiXEB7iNocy32V7WS4kVMAX7OJ0bXEwOlk5a0mPxtmkofGFyCZn9nU94DgPccR-HUxI0LYR7fsZfabkyruRjE0u3JwMB2ynwz7Q4XbdZzc_zq5Xv9Lzy5-_VyfnKeZVNqatoFZw7BqOsgFoddZlsuB1nTdd0aLkUmKrsROVji-FRlTY5a0kKmqOkIlsn6Wb3vBCj1OjHr0Z0K-VQ6NOze2Jcv5OTcOkeFXyuoz89w0f4YFaTXb02H-IfZxYc6_u3LOqRF3mZRELjrYF3j1NFEY1mKCp79GSm4ISUkIhSvGGZhtUexeCp-79GA5qFqeiOLUVp7biYurbvzd8z_w1FYHjDTCnH9zkbfzg_1b-AaihqYQ</recordid><startdate>20210720</startdate><enddate>20210720</enddate><creator>Ojeda-May, Pedro</creator><creator>Mushtaq, Ameeq UI</creator><creator>Rogne, Per</creator><creator>Verma, Apoorv</creator><creator>Ovchinnikov, Victor</creator><creator>Grundström, Christin</creator><creator>Dulko-Smith, Beata</creator><creator>Sauer, Uwe H.</creator><creator>Wolf-Watz, Magnus</creator><creator>Nam, Kwangho</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D93</scope><orcidid>https://orcid.org/0000-0003-0723-7839</orcidid><orcidid>https://orcid.org/0000-0002-9098-7974</orcidid></search><sort><creationdate>20210720</creationdate><title>Dynamic Connection between Enzymatic Catalysis and Collective Protein Motions</title><author>Ojeda-May, Pedro ; Mushtaq, Ameeq UI ; Rogne, Per ; Verma, Apoorv ; Ovchinnikov, Victor ; Grundström, Christin ; Dulko-Smith, Beata ; Sauer, Uwe H. ; Wolf-Watz, Magnus ; Nam, Kwangho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a483t-d2ed21afb1a5b00dc3f3561994bf6da5155adcaf28c1020b28af4d5ee691a0323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adenylate Kinase - chemistry</topic><topic>Catalytic Domain</topic><topic>Crystallography, X-Ray</topic><topic>Escherichia coli - chemistry</topic><topic>Escherichia coli - enzymology</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Molecular Dynamics Simulation</topic><topic>Protein Conformation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ojeda-May, Pedro</creatorcontrib><creatorcontrib>Mushtaq, Ameeq UI</creatorcontrib><creatorcontrib>Rogne, Per</creatorcontrib><creatorcontrib>Verma, Apoorv</creatorcontrib><creatorcontrib>Ovchinnikov, Victor</creatorcontrib><creatorcontrib>Grundström, Christin</creatorcontrib><creatorcontrib>Dulko-Smith, Beata</creatorcontrib><creatorcontrib>Sauer, Uwe H.</creatorcontrib><creatorcontrib>Wolf-Watz, Magnus</creatorcontrib><creatorcontrib>Nam, Kwangho</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Umeå universitet</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ojeda-May, Pedro</au><au>Mushtaq, Ameeq UI</au><au>Rogne, Per</au><au>Verma, Apoorv</au><au>Ovchinnikov, Victor</au><au>Grundström, Christin</au><au>Dulko-Smith, Beata</au><au>Sauer, Uwe H.</au><au>Wolf-Watz, Magnus</au><au>Nam, Kwangho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Connection between Enzymatic Catalysis and Collective Protein Motions</atitle><jtitle>Biochemistry (Easton)</jtitle><addtitle>Biochemistry</addtitle><date>2021-07-20</date><risdate>2021</risdate><volume>60</volume><issue>28</issue><spage>2246</spage><epage>2258</epage><pages>2246-2258</pages><issn>0006-2960</issn><issn>1520-4995</issn><eissn>1520-4995</eissn><abstract>Enzymes employ a wide range of protein motions to achieve efficient catalysis of chemical reactions. While the role of collective protein motions in substrate binding, product release, and regulation of enzymatic activity is generally understood, their roles in catalytic steps per se remain uncertain. Here, molecular dynamics simulations, enzyme kinetics, X-ray crystallography, and nuclear magnetic resonance spectroscopy are combined to elucidate the catalytic mechanism of adenylate kinase and to delineate the roles of catalytic residues in catalysis and the conformational change in the enzyme. This study reveals that the motions in the active site, which occur on a time scale of picoseconds to nanoseconds, link the catalytic reaction to the slow conformational dynamics of the enzyme by modulating the free energy landscapes of subdomain motions. In particular, substantial conformational rearrangement occurs in the active site following the catalytic reaction. This rearrangement not only affects the reaction barrier but also promotes a more open conformation of the enzyme after the reaction, which then results in an accelerated opening of the enzyme compared to that of the reactant state. The results illustrate a linkage between enzymatic catalysis and collective protein motions, whereby the disparate time scales between the two processes are bridged by a cascade of intermediate-scale motion of catalytic residues modulating the free energy landscapes of the catalytic and conformational change processes.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>34250801</pmid><doi>10.1021/acs.biochem.1c00221</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0723-7839</orcidid><orcidid>https://orcid.org/0000-0002-9098-7974</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-2960
ispartof Biochemistry (Easton), 2021-07, Vol.60 (28), p.2246-2258
issn 0006-2960
1520-4995
1520-4995
language eng
recordid cdi_swepub_primary_oai_DiVA_org_umu_187197
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Adenylate Kinase - chemistry
Catalytic Domain
Crystallography, X-Ray
Escherichia coli - chemistry
Escherichia coli - enzymology
Escherichia coli Proteins - chemistry
Molecular Dynamics Simulation
Protein Conformation
title Dynamic Connection between Enzymatic Catalysis and Collective Protein Motions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T13%3A32%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Connection%20between%20Enzymatic%20Catalysis%20and%20Collective%20Protein%20Motions&rft.jtitle=Biochemistry%20(Easton)&rft.au=Ojeda-May,%20Pedro&rft.date=2021-07-20&rft.volume=60&rft.issue=28&rft.spage=2246&rft.epage=2258&rft.pages=2246-2258&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/acs.biochem.1c00221&rft_dat=%3Cproquest_swepu%3E2550627276%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a483t-d2ed21afb1a5b00dc3f3561994bf6da5155adcaf28c1020b28af4d5ee691a0323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2550627276&rft_id=info:pmid/34250801&rfr_iscdi=true