Loading…
Dynamic Connection between Enzymatic Catalysis and Collective Protein Motions
Enzymes employ a wide range of protein motions to achieve efficient catalysis of chemical reactions. While the role of collective protein motions in substrate binding, product release, and regulation of enzymatic activity is generally understood, their roles in catalytic steps per se remain uncertai...
Saved in:
Published in: | Biochemistry (Easton) 2021-07, Vol.60 (28), p.2246-2258 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a483t-d2ed21afb1a5b00dc3f3561994bf6da5155adcaf28c1020b28af4d5ee691a0323 |
---|---|
cites | cdi_FETCH-LOGICAL-a483t-d2ed21afb1a5b00dc3f3561994bf6da5155adcaf28c1020b28af4d5ee691a0323 |
container_end_page | 2258 |
container_issue | 28 |
container_start_page | 2246 |
container_title | Biochemistry (Easton) |
container_volume | 60 |
creator | Ojeda-May, Pedro Mushtaq, Ameeq UI Rogne, Per Verma, Apoorv Ovchinnikov, Victor Grundström, Christin Dulko-Smith, Beata Sauer, Uwe H. Wolf-Watz, Magnus Nam, Kwangho |
description | Enzymes employ a wide range of protein motions to achieve efficient catalysis of chemical reactions. While the role of collective protein motions in substrate binding, product release, and regulation of enzymatic activity is generally understood, their roles in catalytic steps per se remain uncertain. Here, molecular dynamics simulations, enzyme kinetics, X-ray crystallography, and nuclear magnetic resonance spectroscopy are combined to elucidate the catalytic mechanism of adenylate kinase and to delineate the roles of catalytic residues in catalysis and the conformational change in the enzyme. This study reveals that the motions in the active site, which occur on a time scale of picoseconds to nanoseconds, link the catalytic reaction to the slow conformational dynamics of the enzyme by modulating the free energy landscapes of subdomain motions. In particular, substantial conformational rearrangement occurs in the active site following the catalytic reaction. This rearrangement not only affects the reaction barrier but also promotes a more open conformation of the enzyme after the reaction, which then results in an accelerated opening of the enzyme compared to that of the reactant state. The results illustrate a linkage between enzymatic catalysis and collective protein motions, whereby the disparate time scales between the two processes are bridged by a cascade of intermediate-scale motion of catalytic residues modulating the free energy landscapes of the catalytic and conformational change processes. |
doi_str_mv | 10.1021/acs.biochem.1c00221 |
format | article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_umu_187197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2550627276</sourcerecordid><originalsourceid>FETCH-LOGICAL-a483t-d2ed21afb1a5b00dc3f3561994bf6da5155adcaf28c1020b28af4d5ee691a0323</originalsourceid><addsrcrecordid>eNp9kUtP3DAURq2qCKbAL6hUZckmw7UT57GphAb6kECwALbWjXMDRokNdgIafn0dZorKpivLuuf7_DiMfeWw5CD4MeqwbIzT9zQsuQYQgn9iCy4FpHldy89sAQBFKuoC9tiXEB7iNocy32V7WS4kVMAX7OJ0bXEwOlk5a0mPxtmkofGFyCZn9nU94DgPccR-HUxI0LYR7fsZfabkyruRjE0u3JwMB2ynwz7Q4XbdZzc_zq5Xv9Lzy5-_VyfnKeZVNqatoFZw7BqOsgFoddZlsuB1nTdd0aLkUmKrsROVji-FRlTY5a0kKmqOkIlsn6Wb3vBCj1OjHr0Z0K-VQ6NOze2Jcv5OTcOkeFXyuoz89w0f4YFaTXb02H-IfZxYc6_u3LOqRF3mZRELjrYF3j1NFEY1mKCp79GSm4ISUkIhSvGGZhtUexeCp-79GA5qFqeiOLUVp7biYurbvzd8z_w1FYHjDTCnH9zkbfzg_1b-AaihqYQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2550627276</pqid></control><display><type>article</type><title>Dynamic Connection between Enzymatic Catalysis and Collective Protein Motions</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Ojeda-May, Pedro ; Mushtaq, Ameeq UI ; Rogne, Per ; Verma, Apoorv ; Ovchinnikov, Victor ; Grundström, Christin ; Dulko-Smith, Beata ; Sauer, Uwe H. ; Wolf-Watz, Magnus ; Nam, Kwangho</creator><creatorcontrib>Ojeda-May, Pedro ; Mushtaq, Ameeq UI ; Rogne, Per ; Verma, Apoorv ; Ovchinnikov, Victor ; Grundström, Christin ; Dulko-Smith, Beata ; Sauer, Uwe H. ; Wolf-Watz, Magnus ; Nam, Kwangho</creatorcontrib><description>Enzymes employ a wide range of protein motions to achieve efficient catalysis of chemical reactions. While the role of collective protein motions in substrate binding, product release, and regulation of enzymatic activity is generally understood, their roles in catalytic steps per se remain uncertain. Here, molecular dynamics simulations, enzyme kinetics, X-ray crystallography, and nuclear magnetic resonance spectroscopy are combined to elucidate the catalytic mechanism of adenylate kinase and to delineate the roles of catalytic residues in catalysis and the conformational change in the enzyme. This study reveals that the motions in the active site, which occur on a time scale of picoseconds to nanoseconds, link the catalytic reaction to the slow conformational dynamics of the enzyme by modulating the free energy landscapes of subdomain motions. In particular, substantial conformational rearrangement occurs in the active site following the catalytic reaction. This rearrangement not only affects the reaction barrier but also promotes a more open conformation of the enzyme after the reaction, which then results in an accelerated opening of the enzyme compared to that of the reactant state. The results illustrate a linkage between enzymatic catalysis and collective protein motions, whereby the disparate time scales between the two processes are bridged by a cascade of intermediate-scale motion of catalytic residues modulating the free energy landscapes of the catalytic and conformational change processes.</description><identifier>ISSN: 0006-2960</identifier><identifier>ISSN: 1520-4995</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/acs.biochem.1c00221</identifier><identifier>PMID: 34250801</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Adenylate Kinase - chemistry ; Catalytic Domain ; Crystallography, X-Ray ; Escherichia coli - chemistry ; Escherichia coli - enzymology ; Escherichia coli Proteins - chemistry ; Molecular Dynamics Simulation ; Protein Conformation</subject><ispartof>Biochemistry (Easton), 2021-07, Vol.60 (28), p.2246-2258</ispartof><rights>2021 The Authors. Published by American Chemical Society</rights><rights>2021 The Authors. Published by American Chemical Society 2021 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a483t-d2ed21afb1a5b00dc3f3561994bf6da5155adcaf28c1020b28af4d5ee691a0323</citedby><cites>FETCH-LOGICAL-a483t-d2ed21afb1a5b00dc3f3561994bf6da5155adcaf28c1020b28af4d5ee691a0323</cites><orcidid>0000-0003-0723-7839 ; 0000-0002-9098-7974</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34250801$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-187197$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Ojeda-May, Pedro</creatorcontrib><creatorcontrib>Mushtaq, Ameeq UI</creatorcontrib><creatorcontrib>Rogne, Per</creatorcontrib><creatorcontrib>Verma, Apoorv</creatorcontrib><creatorcontrib>Ovchinnikov, Victor</creatorcontrib><creatorcontrib>Grundström, Christin</creatorcontrib><creatorcontrib>Dulko-Smith, Beata</creatorcontrib><creatorcontrib>Sauer, Uwe H.</creatorcontrib><creatorcontrib>Wolf-Watz, Magnus</creatorcontrib><creatorcontrib>Nam, Kwangho</creatorcontrib><title>Dynamic Connection between Enzymatic Catalysis and Collective Protein Motions</title><title>Biochemistry (Easton)</title><addtitle>Biochemistry</addtitle><description>Enzymes employ a wide range of protein motions to achieve efficient catalysis of chemical reactions. While the role of collective protein motions in substrate binding, product release, and regulation of enzymatic activity is generally understood, their roles in catalytic steps per se remain uncertain. Here, molecular dynamics simulations, enzyme kinetics, X-ray crystallography, and nuclear magnetic resonance spectroscopy are combined to elucidate the catalytic mechanism of adenylate kinase and to delineate the roles of catalytic residues in catalysis and the conformational change in the enzyme. This study reveals that the motions in the active site, which occur on a time scale of picoseconds to nanoseconds, link the catalytic reaction to the slow conformational dynamics of the enzyme by modulating the free energy landscapes of subdomain motions. In particular, substantial conformational rearrangement occurs in the active site following the catalytic reaction. This rearrangement not only affects the reaction barrier but also promotes a more open conformation of the enzyme after the reaction, which then results in an accelerated opening of the enzyme compared to that of the reactant state. The results illustrate a linkage between enzymatic catalysis and collective protein motions, whereby the disparate time scales between the two processes are bridged by a cascade of intermediate-scale motion of catalytic residues modulating the free energy landscapes of the catalytic and conformational change processes.</description><subject>Adenylate Kinase - chemistry</subject><subject>Catalytic Domain</subject><subject>Crystallography, X-Ray</subject><subject>Escherichia coli - chemistry</subject><subject>Escherichia coli - enzymology</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Molecular Dynamics Simulation</subject><subject>Protein Conformation</subject><issn>0006-2960</issn><issn>1520-4995</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kUtP3DAURq2qCKbAL6hUZckmw7UT57GphAb6kECwALbWjXMDRokNdgIafn0dZorKpivLuuf7_DiMfeWw5CD4MeqwbIzT9zQsuQYQgn9iCy4FpHldy89sAQBFKuoC9tiXEB7iNocy32V7WS4kVMAX7OJ0bXEwOlk5a0mPxtmkofGFyCZn9nU94DgPccR-HUxI0LYR7fsZfabkyruRjE0u3JwMB2ynwz7Q4XbdZzc_zq5Xv9Lzy5-_VyfnKeZVNqatoFZw7BqOsgFoddZlsuB1nTdd0aLkUmKrsROVji-FRlTY5a0kKmqOkIlsn6Wb3vBCj1OjHr0Z0K-VQ6NOze2Jcv5OTcOkeFXyuoz89w0f4YFaTXb02H-IfZxYc6_u3LOqRF3mZRELjrYF3j1NFEY1mKCp79GSm4ISUkIhSvGGZhtUexeCp-79GA5qFqeiOLUVp7biYurbvzd8z_w1FYHjDTCnH9zkbfzg_1b-AaihqYQ</recordid><startdate>20210720</startdate><enddate>20210720</enddate><creator>Ojeda-May, Pedro</creator><creator>Mushtaq, Ameeq UI</creator><creator>Rogne, Per</creator><creator>Verma, Apoorv</creator><creator>Ovchinnikov, Victor</creator><creator>Grundström, Christin</creator><creator>Dulko-Smith, Beata</creator><creator>Sauer, Uwe H.</creator><creator>Wolf-Watz, Magnus</creator><creator>Nam, Kwangho</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D93</scope><orcidid>https://orcid.org/0000-0003-0723-7839</orcidid><orcidid>https://orcid.org/0000-0002-9098-7974</orcidid></search><sort><creationdate>20210720</creationdate><title>Dynamic Connection between Enzymatic Catalysis and Collective Protein Motions</title><author>Ojeda-May, Pedro ; Mushtaq, Ameeq UI ; Rogne, Per ; Verma, Apoorv ; Ovchinnikov, Victor ; Grundström, Christin ; Dulko-Smith, Beata ; Sauer, Uwe H. ; Wolf-Watz, Magnus ; Nam, Kwangho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a483t-d2ed21afb1a5b00dc3f3561994bf6da5155adcaf28c1020b28af4d5ee691a0323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adenylate Kinase - chemistry</topic><topic>Catalytic Domain</topic><topic>Crystallography, X-Ray</topic><topic>Escherichia coli - chemistry</topic><topic>Escherichia coli - enzymology</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Molecular Dynamics Simulation</topic><topic>Protein Conformation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ojeda-May, Pedro</creatorcontrib><creatorcontrib>Mushtaq, Ameeq UI</creatorcontrib><creatorcontrib>Rogne, Per</creatorcontrib><creatorcontrib>Verma, Apoorv</creatorcontrib><creatorcontrib>Ovchinnikov, Victor</creatorcontrib><creatorcontrib>Grundström, Christin</creatorcontrib><creatorcontrib>Dulko-Smith, Beata</creatorcontrib><creatorcontrib>Sauer, Uwe H.</creatorcontrib><creatorcontrib>Wolf-Watz, Magnus</creatorcontrib><creatorcontrib>Nam, Kwangho</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Umeå universitet</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ojeda-May, Pedro</au><au>Mushtaq, Ameeq UI</au><au>Rogne, Per</au><au>Verma, Apoorv</au><au>Ovchinnikov, Victor</au><au>Grundström, Christin</au><au>Dulko-Smith, Beata</au><au>Sauer, Uwe H.</au><au>Wolf-Watz, Magnus</au><au>Nam, Kwangho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Connection between Enzymatic Catalysis and Collective Protein Motions</atitle><jtitle>Biochemistry (Easton)</jtitle><addtitle>Biochemistry</addtitle><date>2021-07-20</date><risdate>2021</risdate><volume>60</volume><issue>28</issue><spage>2246</spage><epage>2258</epage><pages>2246-2258</pages><issn>0006-2960</issn><issn>1520-4995</issn><eissn>1520-4995</eissn><abstract>Enzymes employ a wide range of protein motions to achieve efficient catalysis of chemical reactions. While the role of collective protein motions in substrate binding, product release, and regulation of enzymatic activity is generally understood, their roles in catalytic steps per se remain uncertain. Here, molecular dynamics simulations, enzyme kinetics, X-ray crystallography, and nuclear magnetic resonance spectroscopy are combined to elucidate the catalytic mechanism of adenylate kinase and to delineate the roles of catalytic residues in catalysis and the conformational change in the enzyme. This study reveals that the motions in the active site, which occur on a time scale of picoseconds to nanoseconds, link the catalytic reaction to the slow conformational dynamics of the enzyme by modulating the free energy landscapes of subdomain motions. In particular, substantial conformational rearrangement occurs in the active site following the catalytic reaction. This rearrangement not only affects the reaction barrier but also promotes a more open conformation of the enzyme after the reaction, which then results in an accelerated opening of the enzyme compared to that of the reactant state. The results illustrate a linkage between enzymatic catalysis and collective protein motions, whereby the disparate time scales between the two processes are bridged by a cascade of intermediate-scale motion of catalytic residues modulating the free energy landscapes of the catalytic and conformational change processes.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>34250801</pmid><doi>10.1021/acs.biochem.1c00221</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-0723-7839</orcidid><orcidid>https://orcid.org/0000-0002-9098-7974</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-2960 |
ispartof | Biochemistry (Easton), 2021-07, Vol.60 (28), p.2246-2258 |
issn | 0006-2960 1520-4995 1520-4995 |
language | eng |
recordid | cdi_swepub_primary_oai_DiVA_org_umu_187197 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Adenylate Kinase - chemistry Catalytic Domain Crystallography, X-Ray Escherichia coli - chemistry Escherichia coli - enzymology Escherichia coli Proteins - chemistry Molecular Dynamics Simulation Protein Conformation |
title | Dynamic Connection between Enzymatic Catalysis and Collective Protein Motions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T13%3A32%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Connection%20between%20Enzymatic%20Catalysis%20and%20Collective%20Protein%20Motions&rft.jtitle=Biochemistry%20(Easton)&rft.au=Ojeda-May,%20Pedro&rft.date=2021-07-20&rft.volume=60&rft.issue=28&rft.spage=2246&rft.epage=2258&rft.pages=2246-2258&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/acs.biochem.1c00221&rft_dat=%3Cproquest_swepu%3E2550627276%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a483t-d2ed21afb1a5b00dc3f3561994bf6da5155adcaf28c1020b28af4d5ee691a0323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2550627276&rft_id=info:pmid/34250801&rfr_iscdi=true |