Loading…

Exploring divalent conjugates of 5- N -acetyl-neuraminic acid as inhibitors of coxsackievirus A24 variant (CVA24v) transduction

Coxsackievirus A24 variant (CVA24v) is responsible for several outbreaks and two pandemics of the highly contagious eye infection acute hemorrhagic conjunctivitis (AHC). Currently, neither prevention (vaccines) nor treatments (antivirals) are available for combating this disease. CVA24v attaches to...

Full description

Saved in:
Bibliographic Details
Published in:RSC advances 2022-01, Vol.12 (4), p.2319-2331
Main Authors: Johansson, Emil, Caraballo, Rémi, Zocher, Georg, Mistry, Nitesh, Arnberg, Niklas, Stehle, Thilo, Elofsson, Mikael
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Coxsackievirus A24 variant (CVA24v) is responsible for several outbreaks and two pandemics of the highly contagious eye infection acute hemorrhagic conjunctivitis (AHC). Currently, neither prevention (vaccines) nor treatments (antivirals) are available for combating this disease. CVA24v attaches to cells by binding Neu5Ac-containing glycans on the surface of cells which facilitates entry. Previously, we have demonstrated that pentavalent Neu5Ac conjugates attenuate CVA24v infection of human corneal epithelial (HCE) cells. In this study, we report on the structure-based design of three classes of divalent Neu5Ac conjugates, with varying spacer lengths, and their effect on CVA24v transduction in HCE cells. In relative terms, the most efficient class of divalent Neu5Ac conjugates are more efficient than the pentavalent Neu5Ac conjugates previously reported.
ISSN:2046-2069
2046-2069
DOI:10.1039/d1ra08968d