Loading…

Rewired m 6 A epitranscriptomic networks link mutant p53 to neoplastic transformation

N6-methyladenosine (m A), one of the most prevalent mRNA modifications in eukaryotes, plays a critical role in modulating both biological and pathological processes. However, it is unknown whether mutant p53 neomorphic oncogenic functions exploit dysregulation of m A epitranscriptomic networks. Here...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2023-03, Vol.14 (1), p.1694
Main Authors: Xu, An, Liu, Mo, Huang, Mo-Fan, Zhang, Yang, Hu, Ruifeng, Gingold, Julian A, Liu, Ying, Zhu, Dandan, Chien, Chian-Shiu, Wang, Wei-Chen, Liao, Zian, Yuan, Fei, Hsu, Chih-Wei, Tu, Jian, Yu, Yao, Rosen, Taylor, Xiong, Feng, Jia, Peilin, Yang, Yi-Ping, Bazer, Danielle A, Chen, Ya-Wen, Li, Wenbo, Huff, Chad D, Zhu, Jay-Jiguang, Aguilo, Francesca, Chiou, Shih-Hwa, Boles, Nathan C, Lai, Chien-Chen, Hung, Mien-Chie, Zhao, Zhongming, Van Nostrand, Eric L, Zhao, Ruiying, Lee, Dung-Fang
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:N6-methyladenosine (m A), one of the most prevalent mRNA modifications in eukaryotes, plays a critical role in modulating both biological and pathological processes. However, it is unknown whether mutant p53 neomorphic oncogenic functions exploit dysregulation of m A epitranscriptomic networks. Here, we investigate Li-Fraumeni syndrome (LFS)-associated neoplastic transformation driven by mutant p53 in iPSC-derived astrocytes, the cell-of-origin of gliomas. We find that mutant p53 but not wild-type (WT) p53 physically interacts with SVIL to recruit the H3K4me3 methyltransferase MLL1 to activate the expression of m A reader YTHDF2, culminating in an oncogenic phenotype. Aberrant YTHDF2 upregulation markedly hampers expression of multiple m A-marked tumor-suppressing transcripts, including CDKN2B and SPOCK2, and induces oncogenic reprogramming. Mutant p53 neoplastic behaviors are significantly impaired by genetic depletion of YTHDF2 or by pharmacological inhibition using MLL1 complex inhibitors. Our study reveals how mutant p53 hijacks epigenetic and epitranscriptomic machinery to initiate gliomagenesis and suggests potential treatment strategies for LFS gliomas.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-023-37398-9