Loading…
Multi-scale modeling in thermal conductivity of Polyurethane incorporated with Phase Change Materials using Physics-Informed Neural Networks
Polyurethane (PU) possesses excellent thermal properties, making it an ideal material for thermal insulation. Incorporating Phase Change Materials (PCMs) capsules into Polyurethane has proven to be an effective strategy for enhancing building envelopes. This innovative design substantially enhances...
Saved in:
Published in: | Renewable energy 2024-01, Vol.220, p.119565, Article 119565 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c335t-2f9db84444136354894a1fb9df48ea26ce130a80d9211eece8dba2e47191626a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c335t-2f9db84444136354894a1fb9df48ea26ce130a80d9211eece8dba2e47191626a3 |
container_end_page | |
container_issue | |
container_start_page | 119565 |
container_title | Renewable energy |
container_volume | 220 |
creator | Liu, Bokai Wang, Yizheng Rabczuk, Timon Olofsson, Thomas Lu, Weizhuo |
description | Polyurethane (PU) possesses excellent thermal properties, making it an ideal material for thermal insulation. Incorporating Phase Change Materials (PCMs) capsules into Polyurethane has proven to be an effective strategy for enhancing building envelopes. This innovative design substantially enhances indoor thermal stability and minimizes fluctuations in indoor air temperature. To investigate the thermal conductivity of the Polyurethane-Phase Change Materials foam composite, we propose a hierarchical multi-scale model utilizing Physics-Informed Neural Networks (PINNs). This model allows accurate prediction and analysis of the material’s thermal conductivity at both the meso-scale and macro-scale. By leveraging the integration of physics-based knowledge and data-driven learning offered by Physics-Informed Neural Networks, we effectively tackle inverse problems and address complex multi-scale phenomena. Furthermore, the obtained thermal conductivity data facilitates the optimization of material design. To fully consider the occupants’ thermal comfort within a building envelope, we conduct a case study evaluating the performance of this optimized material in a detached house. Simultaneously, we predict the energy consumption associated with this scenario. All outcomes demonstrate the promising nature of this design, enabling passive building energy design and significantly improving occupants’ comfort. The successful development of this Physics-Informed Neural Networks-based multi-scale model holds immense potential for advancing our understanding of Polyurethane-Phase Change Material’s thermal properties. It can contribute to the design and optimization of materials for various practical applications, including thermal energy storage systems and insulation design in advanced building envelopes. |
doi_str_mv | 10.1016/j.renene.2023.119565 |
format | article |
fullrecord | <record><control><sourceid>swepub_cross</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_umu_216853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_DiVA_org_umu_216853</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-2f9db84444136354894a1fb9df48ea26ce130a80d9211eece8dba2e47191626a3</originalsourceid><addsrcrecordid>eNo9kE1OwzAQhbMAiVK4AQtfIMETJ2myrMpfpRa6ALaW40walySubIcqd-DQuApiZjHSzHtvpC8I7oBGQCG7P0QGe99RTGMWARRpll4EM1pkNIQkh6vg2toDpZDmi2QW_GyH1qnQStEi6XSFrer3RPXENWg60RKp-2qQTn0rNxJdk51ux8Gga0SPXie1OWojHFbkpFxDdo2wSFb-ukey9XujRGvJYM-xu2a0Stpw3dfadN7yioPxP17RnbT5sjfBZe3VePs358HH0-P76iXcvD2vV8tNKBlLXRjXRVXmiS9gGUuTvEgE1GVR1UmOIs4kAqMip1URAyBKzKtSxJgsoIAszgSbB-GUa094HEp-NKoTZuRaKP6gPpdcmz0fuoHHkOUp8_pk0kujrTVY_zuA8jN1fuATdX6mzifq7BcVN34P</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multi-scale modeling in thermal conductivity of Polyurethane incorporated with Phase Change Materials using Physics-Informed Neural Networks</title><source>ScienceDirect Freedom Collection</source><creator>Liu, Bokai ; Wang, Yizheng ; Rabczuk, Timon ; Olofsson, Thomas ; Lu, Weizhuo</creator><creatorcontrib>Liu, Bokai ; Wang, Yizheng ; Rabczuk, Timon ; Olofsson, Thomas ; Lu, Weizhuo</creatorcontrib><description>Polyurethane (PU) possesses excellent thermal properties, making it an ideal material for thermal insulation. Incorporating Phase Change Materials (PCMs) capsules into Polyurethane has proven to be an effective strategy for enhancing building envelopes. This innovative design substantially enhances indoor thermal stability and minimizes fluctuations in indoor air temperature. To investigate the thermal conductivity of the Polyurethane-Phase Change Materials foam composite, we propose a hierarchical multi-scale model utilizing Physics-Informed Neural Networks (PINNs). This model allows accurate prediction and analysis of the material’s thermal conductivity at both the meso-scale and macro-scale. By leveraging the integration of physics-based knowledge and data-driven learning offered by Physics-Informed Neural Networks, we effectively tackle inverse problems and address complex multi-scale phenomena. Furthermore, the obtained thermal conductivity data facilitates the optimization of material design. To fully consider the occupants’ thermal comfort within a building envelope, we conduct a case study evaluating the performance of this optimized material in a detached house. Simultaneously, we predict the energy consumption associated with this scenario. All outcomes demonstrate the promising nature of this design, enabling passive building energy design and significantly improving occupants’ comfort. The successful development of this Physics-Informed Neural Networks-based multi-scale model holds immense potential for advancing our understanding of Polyurethane-Phase Change Material’s thermal properties. It can contribute to the design and optimization of materials for various practical applications, including thermal energy storage systems and insulation design in advanced building envelopes.</description><identifier>ISSN: 0960-1481</identifier><identifier>ISSN: 1879-0682</identifier><identifier>DOI: 10.1016/j.renene.2023.119565</identifier><language>eng</language><subject>Building energy ; Indoor comfort ; Multi-scale modelling ; Phase Change Materials ; Physics-Informed Neural Networks ; Thermal properties</subject><ispartof>Renewable energy, 2024-01, Vol.220, p.119565, Article 119565</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-2f9db84444136354894a1fb9df48ea26ce130a80d9211eece8dba2e47191626a3</citedby><cites>FETCH-LOGICAL-c335t-2f9db84444136354894a1fb9df48ea26ce130a80d9211eece8dba2e47191626a3</cites><orcidid>0000-0002-8704-8538 ; 0000-0002-3899-7008 ; 0000-0002-7171-1219</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-216853$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Bokai</creatorcontrib><creatorcontrib>Wang, Yizheng</creatorcontrib><creatorcontrib>Rabczuk, Timon</creatorcontrib><creatorcontrib>Olofsson, Thomas</creatorcontrib><creatorcontrib>Lu, Weizhuo</creatorcontrib><title>Multi-scale modeling in thermal conductivity of Polyurethane incorporated with Phase Change Materials using Physics-Informed Neural Networks</title><title>Renewable energy</title><description>Polyurethane (PU) possesses excellent thermal properties, making it an ideal material for thermal insulation. Incorporating Phase Change Materials (PCMs) capsules into Polyurethane has proven to be an effective strategy for enhancing building envelopes. This innovative design substantially enhances indoor thermal stability and minimizes fluctuations in indoor air temperature. To investigate the thermal conductivity of the Polyurethane-Phase Change Materials foam composite, we propose a hierarchical multi-scale model utilizing Physics-Informed Neural Networks (PINNs). This model allows accurate prediction and analysis of the material’s thermal conductivity at both the meso-scale and macro-scale. By leveraging the integration of physics-based knowledge and data-driven learning offered by Physics-Informed Neural Networks, we effectively tackle inverse problems and address complex multi-scale phenomena. Furthermore, the obtained thermal conductivity data facilitates the optimization of material design. To fully consider the occupants’ thermal comfort within a building envelope, we conduct a case study evaluating the performance of this optimized material in a detached house. Simultaneously, we predict the energy consumption associated with this scenario. All outcomes demonstrate the promising nature of this design, enabling passive building energy design and significantly improving occupants’ comfort. The successful development of this Physics-Informed Neural Networks-based multi-scale model holds immense potential for advancing our understanding of Polyurethane-Phase Change Material’s thermal properties. It can contribute to the design and optimization of materials for various practical applications, including thermal energy storage systems and insulation design in advanced building envelopes.</description><subject>Building energy</subject><subject>Indoor comfort</subject><subject>Multi-scale modelling</subject><subject>Phase Change Materials</subject><subject>Physics-Informed Neural Networks</subject><subject>Thermal properties</subject><issn>0960-1481</issn><issn>1879-0682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kE1OwzAQhbMAiVK4AQtfIMETJ2myrMpfpRa6ALaW40walySubIcqd-DQuApiZjHSzHtvpC8I7oBGQCG7P0QGe99RTGMWARRpll4EM1pkNIQkh6vg2toDpZDmi2QW_GyH1qnQStEi6XSFrer3RPXENWg60RKp-2qQTn0rNxJdk51ux8Gga0SPXie1OWojHFbkpFxDdo2wSFb-ukey9XujRGvJYM-xu2a0Stpw3dfadN7yioPxP17RnbT5sjfBZe3VePs358HH0-P76iXcvD2vV8tNKBlLXRjXRVXmiS9gGUuTvEgE1GVR1UmOIs4kAqMip1URAyBKzKtSxJgsoIAszgSbB-GUa094HEp-NKoTZuRaKP6gPpdcmz0fuoHHkOUp8_pk0kujrTVY_zuA8jN1fuATdX6mzifq7BcVN34P</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Liu, Bokai</creator><creator>Wang, Yizheng</creator><creator>Rabczuk, Timon</creator><creator>Olofsson, Thomas</creator><creator>Lu, Weizhuo</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>ADHXS</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>D93</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0002-8704-8538</orcidid><orcidid>https://orcid.org/0000-0002-3899-7008</orcidid><orcidid>https://orcid.org/0000-0002-7171-1219</orcidid></search><sort><creationdate>202401</creationdate><title>Multi-scale modeling in thermal conductivity of Polyurethane incorporated with Phase Change Materials using Physics-Informed Neural Networks</title><author>Liu, Bokai ; Wang, Yizheng ; Rabczuk, Timon ; Olofsson, Thomas ; Lu, Weizhuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-2f9db84444136354894a1fb9df48ea26ce130a80d9211eece8dba2e47191626a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Building energy</topic><topic>Indoor comfort</topic><topic>Multi-scale modelling</topic><topic>Phase Change Materials</topic><topic>Physics-Informed Neural Networks</topic><topic>Thermal properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Bokai</creatorcontrib><creatorcontrib>Wang, Yizheng</creatorcontrib><creatorcontrib>Rabczuk, Timon</creatorcontrib><creatorcontrib>Olofsson, Thomas</creatorcontrib><creatorcontrib>Lu, Weizhuo</creatorcontrib><collection>CrossRef</collection><collection>SWEPUB Umeå universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Umeå universitet</collection><collection>SwePub Articles full text</collection><jtitle>Renewable energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Bokai</au><au>Wang, Yizheng</au><au>Rabczuk, Timon</au><au>Olofsson, Thomas</au><au>Lu, Weizhuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-scale modeling in thermal conductivity of Polyurethane incorporated with Phase Change Materials using Physics-Informed Neural Networks</atitle><jtitle>Renewable energy</jtitle><date>2024-01</date><risdate>2024</risdate><volume>220</volume><spage>119565</spage><pages>119565-</pages><artnum>119565</artnum><issn>0960-1481</issn><issn>1879-0682</issn><abstract>Polyurethane (PU) possesses excellent thermal properties, making it an ideal material for thermal insulation. Incorporating Phase Change Materials (PCMs) capsules into Polyurethane has proven to be an effective strategy for enhancing building envelopes. This innovative design substantially enhances indoor thermal stability and minimizes fluctuations in indoor air temperature. To investigate the thermal conductivity of the Polyurethane-Phase Change Materials foam composite, we propose a hierarchical multi-scale model utilizing Physics-Informed Neural Networks (PINNs). This model allows accurate prediction and analysis of the material’s thermal conductivity at both the meso-scale and macro-scale. By leveraging the integration of physics-based knowledge and data-driven learning offered by Physics-Informed Neural Networks, we effectively tackle inverse problems and address complex multi-scale phenomena. Furthermore, the obtained thermal conductivity data facilitates the optimization of material design. To fully consider the occupants’ thermal comfort within a building envelope, we conduct a case study evaluating the performance of this optimized material in a detached house. Simultaneously, we predict the energy consumption associated with this scenario. All outcomes demonstrate the promising nature of this design, enabling passive building energy design and significantly improving occupants’ comfort. The successful development of this Physics-Informed Neural Networks-based multi-scale model holds immense potential for advancing our understanding of Polyurethane-Phase Change Material’s thermal properties. It can contribute to the design and optimization of materials for various practical applications, including thermal energy storage systems and insulation design in advanced building envelopes.</abstract><doi>10.1016/j.renene.2023.119565</doi><orcidid>https://orcid.org/0000-0002-8704-8538</orcidid><orcidid>https://orcid.org/0000-0002-3899-7008</orcidid><orcidid>https://orcid.org/0000-0002-7171-1219</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-1481 |
ispartof | Renewable energy, 2024-01, Vol.220, p.119565, Article 119565 |
issn | 0960-1481 1879-0682 |
language | eng |
recordid | cdi_swepub_primary_oai_DiVA_org_umu_216853 |
source | ScienceDirect Freedom Collection |
subjects | Building energy Indoor comfort Multi-scale modelling Phase Change Materials Physics-Informed Neural Networks Thermal properties |
title | Multi-scale modeling in thermal conductivity of Polyurethane incorporated with Phase Change Materials using Physics-Informed Neural Networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T08%3A53%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-swepub_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-scale%20modeling%20in%20thermal%20conductivity%20of%20Polyurethane%20incorporated%20with%20Phase%20Change%20Materials%20using%20Physics-Informed%20Neural%20Networks&rft.jtitle=Renewable%20energy&rft.au=Liu,%20Bokai&rft.date=2024-01&rft.volume=220&rft.spage=119565&rft.pages=119565-&rft.artnum=119565&rft.issn=0960-1481&rft_id=info:doi/10.1016/j.renene.2023.119565&rft_dat=%3Cswepub_cross%3Eoai_DiVA_org_umu_216853%3C/swepub_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c335t-2f9db84444136354894a1fb9df48ea26ce130a80d9211eece8dba2e47191626a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |