Loading…

Multi-scale modeling in thermal conductivity of Polyurethane incorporated with Phase Change Materials using Physics-Informed Neural Networks

Polyurethane (PU) possesses excellent thermal properties, making it an ideal material for thermal insulation. Incorporating Phase Change Materials (PCMs) capsules into Polyurethane has proven to be an effective strategy for enhancing building envelopes. This innovative design substantially enhances...

Full description

Saved in:
Bibliographic Details
Published in:Renewable energy 2024-01, Vol.220, p.119565, Article 119565
Main Authors: Liu, Bokai, Wang, Yizheng, Rabczuk, Timon, Olofsson, Thomas, Lu, Weizhuo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c335t-2f9db84444136354894a1fb9df48ea26ce130a80d9211eece8dba2e47191626a3
cites cdi_FETCH-LOGICAL-c335t-2f9db84444136354894a1fb9df48ea26ce130a80d9211eece8dba2e47191626a3
container_end_page
container_issue
container_start_page 119565
container_title Renewable energy
container_volume 220
creator Liu, Bokai
Wang, Yizheng
Rabczuk, Timon
Olofsson, Thomas
Lu, Weizhuo
description Polyurethane (PU) possesses excellent thermal properties, making it an ideal material for thermal insulation. Incorporating Phase Change Materials (PCMs) capsules into Polyurethane has proven to be an effective strategy for enhancing building envelopes. This innovative design substantially enhances indoor thermal stability and minimizes fluctuations in indoor air temperature. To investigate the thermal conductivity of the Polyurethane-Phase Change Materials foam composite, we propose a hierarchical multi-scale model utilizing Physics-Informed Neural Networks (PINNs). This model allows accurate prediction and analysis of the material’s thermal conductivity at both the meso-scale and macro-scale. By leveraging the integration of physics-based knowledge and data-driven learning offered by Physics-Informed Neural Networks, we effectively tackle inverse problems and address complex multi-scale phenomena. Furthermore, the obtained thermal conductivity data facilitates the optimization of material design. To fully consider the occupants’ thermal comfort within a building envelope, we conduct a case study evaluating the performance of this optimized material in a detached house. Simultaneously, we predict the energy consumption associated with this scenario. All outcomes demonstrate the promising nature of this design, enabling passive building energy design and significantly improving occupants’ comfort. The successful development of this Physics-Informed Neural Networks-based multi-scale model holds immense potential for advancing our understanding of Polyurethane-Phase Change Material’s thermal properties. It can contribute to the design and optimization of materials for various practical applications, including thermal energy storage systems and insulation design in advanced building envelopes.
doi_str_mv 10.1016/j.renene.2023.119565
format article
fullrecord <record><control><sourceid>swepub_cross</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_umu_216853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_DiVA_org_umu_216853</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-2f9db84444136354894a1fb9df48ea26ce130a80d9211eece8dba2e47191626a3</originalsourceid><addsrcrecordid>eNo9kE1OwzAQhbMAiVK4AQtfIMETJ2myrMpfpRa6ALaW40walySubIcqd-DQuApiZjHSzHtvpC8I7oBGQCG7P0QGe99RTGMWARRpll4EM1pkNIQkh6vg2toDpZDmi2QW_GyH1qnQStEi6XSFrer3RPXENWg60RKp-2qQTn0rNxJdk51ux8Gga0SPXie1OWojHFbkpFxDdo2wSFb-ukey9XujRGvJYM-xu2a0Stpw3dfadN7yioPxP17RnbT5sjfBZe3VePs358HH0-P76iXcvD2vV8tNKBlLXRjXRVXmiS9gGUuTvEgE1GVR1UmOIs4kAqMip1URAyBKzKtSxJgsoIAszgSbB-GUa094HEp-NKoTZuRaKP6gPpdcmz0fuoHHkOUp8_pk0kujrTVY_zuA8jN1fuATdX6mzifq7BcVN34P</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Multi-scale modeling in thermal conductivity of Polyurethane incorporated with Phase Change Materials using Physics-Informed Neural Networks</title><source>ScienceDirect Freedom Collection</source><creator>Liu, Bokai ; Wang, Yizheng ; Rabczuk, Timon ; Olofsson, Thomas ; Lu, Weizhuo</creator><creatorcontrib>Liu, Bokai ; Wang, Yizheng ; Rabczuk, Timon ; Olofsson, Thomas ; Lu, Weizhuo</creatorcontrib><description>Polyurethane (PU) possesses excellent thermal properties, making it an ideal material for thermal insulation. Incorporating Phase Change Materials (PCMs) capsules into Polyurethane has proven to be an effective strategy for enhancing building envelopes. This innovative design substantially enhances indoor thermal stability and minimizes fluctuations in indoor air temperature. To investigate the thermal conductivity of the Polyurethane-Phase Change Materials foam composite, we propose a hierarchical multi-scale model utilizing Physics-Informed Neural Networks (PINNs). This model allows accurate prediction and analysis of the material’s thermal conductivity at both the meso-scale and macro-scale. By leveraging the integration of physics-based knowledge and data-driven learning offered by Physics-Informed Neural Networks, we effectively tackle inverse problems and address complex multi-scale phenomena. Furthermore, the obtained thermal conductivity data facilitates the optimization of material design. To fully consider the occupants’ thermal comfort within a building envelope, we conduct a case study evaluating the performance of this optimized material in a detached house. Simultaneously, we predict the energy consumption associated with this scenario. All outcomes demonstrate the promising nature of this design, enabling passive building energy design and significantly improving occupants’ comfort. The successful development of this Physics-Informed Neural Networks-based multi-scale model holds immense potential for advancing our understanding of Polyurethane-Phase Change Material’s thermal properties. It can contribute to the design and optimization of materials for various practical applications, including thermal energy storage systems and insulation design in advanced building envelopes.</description><identifier>ISSN: 0960-1481</identifier><identifier>ISSN: 1879-0682</identifier><identifier>DOI: 10.1016/j.renene.2023.119565</identifier><language>eng</language><subject>Building energy ; Indoor comfort ; Multi-scale modelling ; Phase Change Materials ; Physics-Informed Neural Networks ; Thermal properties</subject><ispartof>Renewable energy, 2024-01, Vol.220, p.119565, Article 119565</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-2f9db84444136354894a1fb9df48ea26ce130a80d9211eece8dba2e47191626a3</citedby><cites>FETCH-LOGICAL-c335t-2f9db84444136354894a1fb9df48ea26ce130a80d9211eece8dba2e47191626a3</cites><orcidid>0000-0002-8704-8538 ; 0000-0002-3899-7008 ; 0000-0002-7171-1219</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-216853$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Bokai</creatorcontrib><creatorcontrib>Wang, Yizheng</creatorcontrib><creatorcontrib>Rabczuk, Timon</creatorcontrib><creatorcontrib>Olofsson, Thomas</creatorcontrib><creatorcontrib>Lu, Weizhuo</creatorcontrib><title>Multi-scale modeling in thermal conductivity of Polyurethane incorporated with Phase Change Materials using Physics-Informed Neural Networks</title><title>Renewable energy</title><description>Polyurethane (PU) possesses excellent thermal properties, making it an ideal material for thermal insulation. Incorporating Phase Change Materials (PCMs) capsules into Polyurethane has proven to be an effective strategy for enhancing building envelopes. This innovative design substantially enhances indoor thermal stability and minimizes fluctuations in indoor air temperature. To investigate the thermal conductivity of the Polyurethane-Phase Change Materials foam composite, we propose a hierarchical multi-scale model utilizing Physics-Informed Neural Networks (PINNs). This model allows accurate prediction and analysis of the material’s thermal conductivity at both the meso-scale and macro-scale. By leveraging the integration of physics-based knowledge and data-driven learning offered by Physics-Informed Neural Networks, we effectively tackle inverse problems and address complex multi-scale phenomena. Furthermore, the obtained thermal conductivity data facilitates the optimization of material design. To fully consider the occupants’ thermal comfort within a building envelope, we conduct a case study evaluating the performance of this optimized material in a detached house. Simultaneously, we predict the energy consumption associated with this scenario. All outcomes demonstrate the promising nature of this design, enabling passive building energy design and significantly improving occupants’ comfort. The successful development of this Physics-Informed Neural Networks-based multi-scale model holds immense potential for advancing our understanding of Polyurethane-Phase Change Material’s thermal properties. It can contribute to the design and optimization of materials for various practical applications, including thermal energy storage systems and insulation design in advanced building envelopes.</description><subject>Building energy</subject><subject>Indoor comfort</subject><subject>Multi-scale modelling</subject><subject>Phase Change Materials</subject><subject>Physics-Informed Neural Networks</subject><subject>Thermal properties</subject><issn>0960-1481</issn><issn>1879-0682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kE1OwzAQhbMAiVK4AQtfIMETJ2myrMpfpRa6ALaW40walySubIcqd-DQuApiZjHSzHtvpC8I7oBGQCG7P0QGe99RTGMWARRpll4EM1pkNIQkh6vg2toDpZDmi2QW_GyH1qnQStEi6XSFrer3RPXENWg60RKp-2qQTn0rNxJdk51ux8Gga0SPXie1OWojHFbkpFxDdo2wSFb-ukey9XujRGvJYM-xu2a0Stpw3dfadN7yioPxP17RnbT5sjfBZe3VePs358HH0-P76iXcvD2vV8tNKBlLXRjXRVXmiS9gGUuTvEgE1GVR1UmOIs4kAqMip1URAyBKzKtSxJgsoIAszgSbB-GUa094HEp-NKoTZuRaKP6gPpdcmz0fuoHHkOUp8_pk0kujrTVY_zuA8jN1fuATdX6mzifq7BcVN34P</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Liu, Bokai</creator><creator>Wang, Yizheng</creator><creator>Rabczuk, Timon</creator><creator>Olofsson, Thomas</creator><creator>Lu, Weizhuo</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>ADHXS</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>D93</scope><scope>ZZAVC</scope><orcidid>https://orcid.org/0000-0002-8704-8538</orcidid><orcidid>https://orcid.org/0000-0002-3899-7008</orcidid><orcidid>https://orcid.org/0000-0002-7171-1219</orcidid></search><sort><creationdate>202401</creationdate><title>Multi-scale modeling in thermal conductivity of Polyurethane incorporated with Phase Change Materials using Physics-Informed Neural Networks</title><author>Liu, Bokai ; Wang, Yizheng ; Rabczuk, Timon ; Olofsson, Thomas ; Lu, Weizhuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-2f9db84444136354894a1fb9df48ea26ce130a80d9211eece8dba2e47191626a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Building energy</topic><topic>Indoor comfort</topic><topic>Multi-scale modelling</topic><topic>Phase Change Materials</topic><topic>Physics-Informed Neural Networks</topic><topic>Thermal properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Bokai</creatorcontrib><creatorcontrib>Wang, Yizheng</creatorcontrib><creatorcontrib>Rabczuk, Timon</creatorcontrib><creatorcontrib>Olofsson, Thomas</creatorcontrib><creatorcontrib>Lu, Weizhuo</creatorcontrib><collection>CrossRef</collection><collection>SWEPUB Umeå universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Umeå universitet</collection><collection>SwePub Articles full text</collection><jtitle>Renewable energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Bokai</au><au>Wang, Yizheng</au><au>Rabczuk, Timon</au><au>Olofsson, Thomas</au><au>Lu, Weizhuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-scale modeling in thermal conductivity of Polyurethane incorporated with Phase Change Materials using Physics-Informed Neural Networks</atitle><jtitle>Renewable energy</jtitle><date>2024-01</date><risdate>2024</risdate><volume>220</volume><spage>119565</spage><pages>119565-</pages><artnum>119565</artnum><issn>0960-1481</issn><issn>1879-0682</issn><abstract>Polyurethane (PU) possesses excellent thermal properties, making it an ideal material for thermal insulation. Incorporating Phase Change Materials (PCMs) capsules into Polyurethane has proven to be an effective strategy for enhancing building envelopes. This innovative design substantially enhances indoor thermal stability and minimizes fluctuations in indoor air temperature. To investigate the thermal conductivity of the Polyurethane-Phase Change Materials foam composite, we propose a hierarchical multi-scale model utilizing Physics-Informed Neural Networks (PINNs). This model allows accurate prediction and analysis of the material’s thermal conductivity at both the meso-scale and macro-scale. By leveraging the integration of physics-based knowledge and data-driven learning offered by Physics-Informed Neural Networks, we effectively tackle inverse problems and address complex multi-scale phenomena. Furthermore, the obtained thermal conductivity data facilitates the optimization of material design. To fully consider the occupants’ thermal comfort within a building envelope, we conduct a case study evaluating the performance of this optimized material in a detached house. Simultaneously, we predict the energy consumption associated with this scenario. All outcomes demonstrate the promising nature of this design, enabling passive building energy design and significantly improving occupants’ comfort. The successful development of this Physics-Informed Neural Networks-based multi-scale model holds immense potential for advancing our understanding of Polyurethane-Phase Change Material’s thermal properties. It can contribute to the design and optimization of materials for various practical applications, including thermal energy storage systems and insulation design in advanced building envelopes.</abstract><doi>10.1016/j.renene.2023.119565</doi><orcidid>https://orcid.org/0000-0002-8704-8538</orcidid><orcidid>https://orcid.org/0000-0002-3899-7008</orcidid><orcidid>https://orcid.org/0000-0002-7171-1219</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0960-1481
ispartof Renewable energy, 2024-01, Vol.220, p.119565, Article 119565
issn 0960-1481
1879-0682
language eng
recordid cdi_swepub_primary_oai_DiVA_org_umu_216853
source ScienceDirect Freedom Collection
subjects Building energy
Indoor comfort
Multi-scale modelling
Phase Change Materials
Physics-Informed Neural Networks
Thermal properties
title Multi-scale modeling in thermal conductivity of Polyurethane incorporated with Phase Change Materials using Physics-Informed Neural Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T08%3A53%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-swepub_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-scale%20modeling%20in%20thermal%20conductivity%20of%20Polyurethane%20incorporated%20with%20Phase%20Change%20Materials%20using%20Physics-Informed%20Neural%20Networks&rft.jtitle=Renewable%20energy&rft.au=Liu,%20Bokai&rft.date=2024-01&rft.volume=220&rft.spage=119565&rft.pages=119565-&rft.artnum=119565&rft.issn=0960-1481&rft_id=info:doi/10.1016/j.renene.2023.119565&rft_dat=%3Cswepub_cross%3Eoai_DiVA_org_umu_216853%3C/swepub_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c335t-2f9db84444136354894a1fb9df48ea26ce130a80d9211eece8dba2e47191626a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true