Loading…

Coupled map lattice approximations for spatially explicit individual-based models of ecology

Spatially explicit individual-based models are widely used in ecology but they are often difficult to treat analytically. Despite their intractability they often exhibit clear temporal and spatial patterning. We demonstrate how a spatially explicit individual-based model of scramble competition with...

Full description

Saved in:
Bibliographic Details
Published in:Bulletin of mathematical biology 2005-07, Vol.67 (4), p.663-682
Main Authors: Brännström, Å., Sumpter, D.J.T.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Spatially explicit individual-based models are widely used in ecology but they are often difficult to treat analytically. Despite their intractability they often exhibit clear temporal and spatial patterning. We demonstrate how a spatially explicit individual-based model of scramble competition with local dispersal can be approximated by a stochastic coupled map lattice. The approximation disentangles the deterministic and stochastic element of local interaction and dispersal. We are thus able to understand the individual-based model through a simplified set of equations. In particular, we demonstrate that demographic noise leads to increased stability in the dynamics of locally dispersing single-species populations. The coupled map lattice approximation has general application to a range of spatially explicit individual-based models. It provides a new alternative to current approximation techniques, such as the method of moments and reaction–diffusion approximation, that captures both stochastic effects and large-scale patterning arising in individual-based models.
ISSN:0092-8240
1522-9602
1522-9602
DOI:10.1016/j.bulm.2004.09.006