Loading…

Improved Oxygen Reduction Performance of Pt–Ni Nanoparticles by Adhesion on Nitrogen-Doped Graphene

Graphene and its derivatives hold great potential as support for nanocatalyst in various energy applications, such as fuel cells, batteries, and capacitors. In this work, we used density functional theory to analyze substrate effect on the electrocatalytic activity of Pt–Ni bimetallic nanoparticles...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physical chemistry. C 2014-02, Vol.118 (5), p.2804-2811
Main Authors: Gracia-Espino, Eduardo, Jia, Xueen, Wågberg, Thomas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a296t-8a8f0ada300021918a3848e03439e58f4503bdb04d1cc503e765de18e9fc765c3
cites cdi_FETCH-LOGICAL-a296t-8a8f0ada300021918a3848e03439e58f4503bdb04d1cc503e765de18e9fc765c3
container_end_page 2811
container_issue 5
container_start_page 2804
container_title Journal of physical chemistry. C
container_volume 118
creator Gracia-Espino, Eduardo
Jia, Xueen
Wågberg, Thomas
description Graphene and its derivatives hold great potential as support for nanocatalyst in various energy applications, such as fuel cells, batteries, and capacitors. In this work, we used density functional theory to analyze substrate effect on the electrocatalytic activity of Pt–Ni bimetallic nanoparticles for oxygen reduction reaction (ORR). The dissociative mechanism is used to evaluate the ORR performance (energy barrier for O2 dissociation, free energy of intermediates, d-band center, overpotential, and electrochemical activity) for a Pt–Ni core–shell-like nanoparticle (PtNiCS) deposited on nondefective graphene (GS) or nitrogen-doped graphene (N-GS). The electronic and catalytic properties of PtNiCS on N-GS designate N-doped graphene as the best substrate to use for ORR, showing better interaction with the bimetallic cluster, improved charge transfer between constitutes, and a superior ORR performance when compared to PtNiCS on GS. The N-GS has a significant effect in reducing the energy barrier for O2 dissociation and decrease the energetic stability of HO* intermediates, resulting in enhanced ORR activity compared with the PtNiCS on GS. In addition, the strong interaction between PtNiCS cluster and N-GS substrate may lead to an improved long-term stability of the catalytic particle during ORR cycles.
doi_str_mv 10.1021/jp4101619
format article
fullrecord <record><control><sourceid>acs_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_umu_85455</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c629886018</sourcerecordid><originalsourceid>FETCH-LOGICAL-a296t-8a8f0ada300021918a3848e03439e58f4503bdb04d1cc503e765de18e9fc765c3</originalsourceid><addsrcrecordid>eNptkMFKAzEYhIMoWKsH3yAXD4KrSbNps8dStRZKW0S9hmz2T5vS3SzJrtqb7-Ab-iSmVHoSfvjn8M3ADEKXlNxS0qN36zqlhPZpdoQ6NGO9ZJByfnzQ6eAUnYWwJoQzQlkHwaSsvXuHAs8_t0uo8DMUrW6sq_ACvHG-VJUG7AxeND9f3zOLZ6pytfKN1RsION_iYbGCsDPEm9nGuxiT3Ls6Zo69qldQwTk6MWoT4OLvd9Hr48PL6CmZzseT0XCaqF7WbxKhhCGqUIyQ2CWjQjGRCiAsZRlwYVJOWF7kJC2o1lHDoM8LoAIyo6PUrItu9rnhA-o2l7W3pfJb6ZSV9_ZtKJ1fyrZspeBxlohf73HtXQgezMFAidzNKQ9zRvZqzyod5Nq1vopF_uF-AYBXdQ8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Improved Oxygen Reduction Performance of Pt–Ni Nanoparticles by Adhesion on Nitrogen-Doped Graphene</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Gracia-Espino, Eduardo ; Jia, Xueen ; Wågberg, Thomas</creator><creatorcontrib>Gracia-Espino, Eduardo ; Jia, Xueen ; Wågberg, Thomas</creatorcontrib><description>Graphene and its derivatives hold great potential as support for nanocatalyst in various energy applications, such as fuel cells, batteries, and capacitors. In this work, we used density functional theory to analyze substrate effect on the electrocatalytic activity of Pt–Ni bimetallic nanoparticles for oxygen reduction reaction (ORR). The dissociative mechanism is used to evaluate the ORR performance (energy barrier for O2 dissociation, free energy of intermediates, d-band center, overpotential, and electrochemical activity) for a Pt–Ni core–shell-like nanoparticle (PtNiCS) deposited on nondefective graphene (GS) or nitrogen-doped graphene (N-GS). The electronic and catalytic properties of PtNiCS on N-GS designate N-doped graphene as the best substrate to use for ORR, showing better interaction with the bimetallic cluster, improved charge transfer between constitutes, and a superior ORR performance when compared to PtNiCS on GS. The N-GS has a significant effect in reducing the energy barrier for O2 dissociation and decrease the energetic stability of HO* intermediates, resulting in enhanced ORR activity compared with the PtNiCS on GS. In addition, the strong interaction between PtNiCS cluster and N-GS substrate may lead to an improved long-term stability of the catalytic particle during ORR cycles.</description><identifier>ISSN: 1932-7447</identifier><identifier>ISSN: 1932-7455</identifier><identifier>EISSN: 1932-7455</identifier><identifier>DOI: 10.1021/jp4101619</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Materials Science ; materialvetenskap</subject><ispartof>Journal of physical chemistry. C, 2014-02, Vol.118 (5), p.2804-2811</ispartof><rights>Copyright © 2014 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a296t-8a8f0ada300021918a3848e03439e58f4503bdb04d1cc503e765de18e9fc765c3</citedby><cites>FETCH-LOGICAL-a296t-8a8f0ada300021918a3848e03439e58f4503bdb04d1cc503e765de18e9fc765c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-85455$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Gracia-Espino, Eduardo</creatorcontrib><creatorcontrib>Jia, Xueen</creatorcontrib><creatorcontrib>Wågberg, Thomas</creatorcontrib><title>Improved Oxygen Reduction Performance of Pt–Ni Nanoparticles by Adhesion on Nitrogen-Doped Graphene</title><title>Journal of physical chemistry. C</title><addtitle>J. Phys. Chem. C</addtitle><description>Graphene and its derivatives hold great potential as support for nanocatalyst in various energy applications, such as fuel cells, batteries, and capacitors. In this work, we used density functional theory to analyze substrate effect on the electrocatalytic activity of Pt–Ni bimetallic nanoparticles for oxygen reduction reaction (ORR). The dissociative mechanism is used to evaluate the ORR performance (energy barrier for O2 dissociation, free energy of intermediates, d-band center, overpotential, and electrochemical activity) for a Pt–Ni core–shell-like nanoparticle (PtNiCS) deposited on nondefective graphene (GS) or nitrogen-doped graphene (N-GS). The electronic and catalytic properties of PtNiCS on N-GS designate N-doped graphene as the best substrate to use for ORR, showing better interaction with the bimetallic cluster, improved charge transfer between constitutes, and a superior ORR performance when compared to PtNiCS on GS. The N-GS has a significant effect in reducing the energy barrier for O2 dissociation and decrease the energetic stability of HO* intermediates, resulting in enhanced ORR activity compared with the PtNiCS on GS. In addition, the strong interaction between PtNiCS cluster and N-GS substrate may lead to an improved long-term stability of the catalytic particle during ORR cycles.</description><subject>Materials Science</subject><subject>materialvetenskap</subject><issn>1932-7447</issn><issn>1932-7455</issn><issn>1932-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNptkMFKAzEYhIMoWKsH3yAXD4KrSbNps8dStRZKW0S9hmz2T5vS3SzJrtqb7-Ab-iSmVHoSfvjn8M3ADEKXlNxS0qN36zqlhPZpdoQ6NGO9ZJByfnzQ6eAUnYWwJoQzQlkHwaSsvXuHAs8_t0uo8DMUrW6sq_ACvHG-VJUG7AxeND9f3zOLZ6pytfKN1RsION_iYbGCsDPEm9nGuxiT3Ls6Zo69qldQwTk6MWoT4OLvd9Hr48PL6CmZzseT0XCaqF7WbxKhhCGqUIyQ2CWjQjGRCiAsZRlwYVJOWF7kJC2o1lHDoM8LoAIyo6PUrItu9rnhA-o2l7W3pfJb6ZSV9_ZtKJ1fyrZspeBxlohf73HtXQgezMFAidzNKQ9zRvZqzyod5Nq1vopF_uF-AYBXdQ8</recordid><startdate>20140206</startdate><enddate>20140206</enddate><creator>Gracia-Espino, Eduardo</creator><creator>Jia, Xueen</creator><creator>Wågberg, Thomas</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D93</scope></search><sort><creationdate>20140206</creationdate><title>Improved Oxygen Reduction Performance of Pt–Ni Nanoparticles by Adhesion on Nitrogen-Doped Graphene</title><author>Gracia-Espino, Eduardo ; Jia, Xueen ; Wågberg, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a296t-8a8f0ada300021918a3848e03439e58f4503bdb04d1cc503e765de18e9fc765c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Materials Science</topic><topic>materialvetenskap</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gracia-Espino, Eduardo</creatorcontrib><creatorcontrib>Jia, Xueen</creatorcontrib><creatorcontrib>Wågberg, Thomas</creatorcontrib><collection>CrossRef</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Umeå universitet</collection><jtitle>Journal of physical chemistry. C</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gracia-Espino, Eduardo</au><au>Jia, Xueen</au><au>Wågberg, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved Oxygen Reduction Performance of Pt–Ni Nanoparticles by Adhesion on Nitrogen-Doped Graphene</atitle><jtitle>Journal of physical chemistry. C</jtitle><addtitle>J. Phys. Chem. C</addtitle><date>2014-02-06</date><risdate>2014</risdate><volume>118</volume><issue>5</issue><spage>2804</spage><epage>2811</epage><pages>2804-2811</pages><issn>1932-7447</issn><issn>1932-7455</issn><eissn>1932-7455</eissn><abstract>Graphene and its derivatives hold great potential as support for nanocatalyst in various energy applications, such as fuel cells, batteries, and capacitors. In this work, we used density functional theory to analyze substrate effect on the electrocatalytic activity of Pt–Ni bimetallic nanoparticles for oxygen reduction reaction (ORR). The dissociative mechanism is used to evaluate the ORR performance (energy barrier for O2 dissociation, free energy of intermediates, d-band center, overpotential, and electrochemical activity) for a Pt–Ni core–shell-like nanoparticle (PtNiCS) deposited on nondefective graphene (GS) or nitrogen-doped graphene (N-GS). The electronic and catalytic properties of PtNiCS on N-GS designate N-doped graphene as the best substrate to use for ORR, showing better interaction with the bimetallic cluster, improved charge transfer between constitutes, and a superior ORR performance when compared to PtNiCS on GS. The N-GS has a significant effect in reducing the energy barrier for O2 dissociation and decrease the energetic stability of HO* intermediates, resulting in enhanced ORR activity compared with the PtNiCS on GS. In addition, the strong interaction between PtNiCS cluster and N-GS substrate may lead to an improved long-term stability of the catalytic particle during ORR cycles.</abstract><pub>American Chemical Society</pub><doi>10.1021/jp4101619</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1932-7447
ispartof Journal of physical chemistry. C, 2014-02, Vol.118 (5), p.2804-2811
issn 1932-7447
1932-7455
1932-7455
language eng
recordid cdi_swepub_primary_oai_DiVA_org_umu_85455
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Materials Science
materialvetenskap
title Improved Oxygen Reduction Performance of Pt–Ni Nanoparticles by Adhesion on Nitrogen-Doped Graphene
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T08%3A08%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20Oxygen%20Reduction%20Performance%20of%20Pt%E2%80%93Ni%20Nanoparticles%20by%20Adhesion%20on%20Nitrogen-Doped%20Graphene&rft.jtitle=Journal%20of%20physical%20chemistry.%20C&rft.au=Gracia-Espino,%20Eduardo&rft.date=2014-02-06&rft.volume=118&rft.issue=5&rft.spage=2804&rft.epage=2811&rft.pages=2804-2811&rft.issn=1932-7447&rft.eissn=1932-7455&rft_id=info:doi/10.1021/jp4101619&rft_dat=%3Cacs_swepu%3Ec629886018%3C/acs_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a296t-8a8f0ada300021918a3848e03439e58f4503bdb04d1cc503e765de18e9fc765c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true