Loading…

S and P velocity heterogeneities within the upper mantle below the Baltic Shield

Upper mantle structure beneath the Baltic (Fennoscandian) Shield is investigated using non-linear tomographic inversion of relative arrival-time residuals. 52 selected teleseismic earthquakes recorded by 45 broadband stations of the Swedish National Seismological Network (SNSN) provide 1532 good qua...

Full description

Saved in:
Bibliographic Details
Published in:Tectonophysics 2008-12, Vol.462 (1), p.109-124
Main Authors: Eken, Tuna, Shomali, Z. Hossein, Roberts, Roland, Hieronymus, Christoph F., Bodvarsson, Reynir
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Upper mantle structure beneath the Baltic (Fennoscandian) Shield is investigated using non-linear tomographic inversion of relative arrival-time residuals. 52 selected teleseismic earthquakes recorded by 45 broadband stations of the Swedish National Seismological Network (SNSN) provide 1532 good quality S-wave relative arrival times. SV and SH arrival-time residuals were initially analyzed independently, providing two separate models. These reveal several consistent major features, many of which are also consistent with P-wave results. Lateral velocity variations of ± 3–4% are observed to depths of at least 470 km. The correlation between the SH and SV models is investigated and shows a pattern of minor but significant differences down to around 150–200 km depth, below which the models are essentially similar. Direct cell by cell comparison of the model velocities reveals a similar pattern, with velocity differences between the models of up to 4%. Numerical tests show that differences in the two S-wave models can only be partially attributed to noise and limited resolution, and some features are attributed to the effect of large scale anisotropy. One of the significant and sharp discrepancies between the S models coincides with a presumed boundary between Archean and Proterozic domains, suggesting different anisotropic characteristics in the two regions.
ISSN:0040-1951
1879-3266
1879-3266
DOI:10.1016/j.tecto.2008.02.015