Loading…

EPR investigations of synthetic manganese complexes as bio-mimics of the water oxidation complex in photosystem II

Research in the Swedish Consortium for Artificial Photosynthesis aims to construct a supramolecular system containing synthetically connected D (electron donor), S (photosensitizer), and A (electron acceptor) compartments. These are intended to carry out catalytic water oxidation on the donor side a...

Full description

Saved in:
Bibliographic Details
Published in:Applied magnetic resonance 2007-01, Vol.31 (1-2), p.301-320
Main Authors: Huang, P., Kurz, P., Styring, S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Research in the Swedish Consortium for Artificial Photosynthesis aims to construct a supramolecular system containing synthetically connected D (electron donor), S (photosensitizer), and A (electron acceptor) compartments. These are intended to carry out catalytic water oxidation on the donor side and catalytic hydrogen formation on the acceptor side, driven by light energy absorbed by the photosensitizer. In this minireview, we focus our attention on our spectroscopic and electrochemical studies of a series of manganese complexes partially mimicking the water-oxidizing manganese complex in the natural photosystem II (PSII), using ruthenium(II) tris(bypyridine) as the photosensitizer. The manganese complexes we discuss fall in three categories: monomeric manganese systems covalently linked to the ruthenium(II) tris(bypyridine) center, dimeric manganese complexes that are not covalently connected to ruthenium(II) tris(bypyridine) and dimeric manganese complexes covalently bound to a ruthenium(II) tris(bypyridine) center via an amide bound. The review focuses on the use of electron paramagnetic resonance spectroscopy in the studies of our manganese compounds.
ISSN:0937-9347
1613-7507
1613-7507
DOI:10.1007/BF03166262