Loading…

Bacterial ribosome requires multiple L12 dimers for efficient initiation and elongation of protein synthesis involving IF2 and EF-G

The ribosomal stalk in bacteria is composed of four or six copies of L12 proteins arranged in dimers that bind to the adjacent sites on protein L10, spanning 10 amino acids each from the L10 C-terminus. To study why multiple L12 dimers are required on the ribosome, we created a chromosomally enginee...

Full description

Saved in:
Bibliographic Details
Published in:Nucleic acids research 2012-03, Vol.40 (5), p.2054-2064
Main Authors: Mandava, Chandra Sekhar, Peisker, Kristin, Ederth, Josefine, Kumar, Ranjeet, Ge, Xueliang, Szaflarski, Witold, Sanyal, Suparna
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c480t-6014608ea42330e3d8fe1548aa26a9c79275e64f445a707fe6289bf0790308593
cites cdi_FETCH-LOGICAL-c480t-6014608ea42330e3d8fe1548aa26a9c79275e64f445a707fe6289bf0790308593
container_end_page 2064
container_issue 5
container_start_page 2054
container_title Nucleic acids research
container_volume 40
creator Mandava, Chandra Sekhar
Peisker, Kristin
Ederth, Josefine
Kumar, Ranjeet
Ge, Xueliang
Szaflarski, Witold
Sanyal, Suparna
description The ribosomal stalk in bacteria is composed of four or six copies of L12 proteins arranged in dimers that bind to the adjacent sites on protein L10, spanning 10 amino acids each from the L10 C-terminus. To study why multiple L12 dimers are required on the ribosome, we created a chromosomally engineered Escherichia coli strain, JE105, in which the peripheral L12 dimer binding site was deleted. Thus JE105 harbors ribosomes with only a single L12 dimer. Compared to MG1655, the parental strain with two L12 dimers, JE105 showed significant growth defect suggesting suboptimal function of the ribosomes with one L12 dimer. When tested in a cell-free reconstituted transcription-translation assay the synthesis of a full-length protein, firefly luciferase, was notably slower with JE105 70S ribosomes and 50S subunits. Further, in vitro analysis by fast kinetics revealed that single L12 dimer ribosomes from JE105 are defective in two major steps of translation, namely initiation and elongation involving translational GTPases IF2 and EF-G. Varying number of L12 dimers on the ribosome can be a mechanism in bacteria for modulating the rate of translation in response to growth condition.
doi_str_mv 10.1093/nar/gkr1031
format article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_uu_157694</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/nar/gkr1031</oup_id><sourcerecordid>968177344</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-6014608ea42330e3d8fe1548aa26a9c79275e64f445a707fe6289bf0790308593</originalsourceid><addsrcrecordid>eNqFks1v1DAQxS0EokvhxB35BAcI9Vcc-1KplG6ptBIX4Gp5s-PUkNipnSzqmX8cQ5aKXsCXkeXfPM3zPISeU_KWEs1Pgk0n3bdECacP0IpyySqhJXuIVoSTuqJEqCP0JOevhFBBa_EYHTFGCasVW6Ef72w7QfK2x8lvY44D4AQ3s0-Q8TD3kx97wBvK8M4PkDJ2MWFwzrcewoR98JO3k48B27DD0MfQLdfo8JjiBD7gfBuma8g-F3wf-70PHb5as98dF-vq8il65Gyf4dmhHqPP64tP5x-qzcfLq_OzTdUKRaZKlvElUWAF45wA3ykHxY6ylkmr20azpgYpnBC1bUjjQDKlt440uvyDqjU_Rm8W3fwdxnlrxuQHm25NtN6891_OTEydmWdD60ZqUfDTBS_sALu2-E22v9d1_yX4a9PFveFMl8OLwKuDQIo3M-TJDD630Pc2QJyz0VLRpuFC_J9kije15KyQrxeyTTHnBO5uHkrMrziYEgdziEOhX_xt4Y79s_8CvFyAOI__VPoJDTa_xQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>928375632</pqid></control><display><type>article</type><title>Bacterial ribosome requires multiple L12 dimers for efficient initiation and elongation of protein synthesis involving IF2 and EF-G</title><source>PMC (PubMed Central)</source><source>Oxford University Press Open Access</source><creator>Mandava, Chandra Sekhar ; Peisker, Kristin ; Ederth, Josefine ; Kumar, Ranjeet ; Ge, Xueliang ; Szaflarski, Witold ; Sanyal, Suparna</creator><creatorcontrib>Mandava, Chandra Sekhar ; Peisker, Kristin ; Ederth, Josefine ; Kumar, Ranjeet ; Ge, Xueliang ; Szaflarski, Witold ; Sanyal, Suparna</creatorcontrib><description>The ribosomal stalk in bacteria is composed of four or six copies of L12 proteins arranged in dimers that bind to the adjacent sites on protein L10, spanning 10 amino acids each from the L10 C-terminus. To study why multiple L12 dimers are required on the ribosome, we created a chromosomally engineered Escherichia coli strain, JE105, in which the peripheral L12 dimer binding site was deleted. Thus JE105 harbors ribosomes with only a single L12 dimer. Compared to MG1655, the parental strain with two L12 dimers, JE105 showed significant growth defect suggesting suboptimal function of the ribosomes with one L12 dimer. When tested in a cell-free reconstituted transcription-translation assay the synthesis of a full-length protein, firefly luciferase, was notably slower with JE105 70S ribosomes and 50S subunits. Further, in vitro analysis by fast kinetics revealed that single L12 dimer ribosomes from JE105 are defective in two major steps of translation, namely initiation and elongation involving translational GTPases IF2 and EF-G. Varying number of L12 dimers on the ribosome can be a mechanism in bacteria for modulating the rate of translation in response to growth condition.</description><identifier>ISSN: 0305-1048</identifier><identifier>ISSN: 1362-4962</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkr1031</identifier><identifier>PMID: 22102582</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Amino acids ; Biochemistry ; Biokemi ; Biologi med inriktning mot molekylärbiologi ; Biology with specialization in Molecular Biology ; C-Terminus ; Chemistry ; Dimerization ; Elongation ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - metabolism ; Growth conditions ; Guanosine Triphosphate - metabolism ; Guanosinetriphosphatase ; IF2 ; Kemi ; Kinetics ; L12 ; L12 protein ; Molecular Biology ; Molekylärbiologi ; NATURAL SCIENCES ; NATURVETENSKAP ; Peptide Chain Elongation, Translational ; Peptide Chain Initiation, Translational ; Peptide Elongation Factor G - metabolism ; Prokaryotic Initiation Factor-2 - metabolism ; Protein biosynthesis ; protein synthesis ; Ribosomal Proteins - chemistry ; Ribosomal Proteins - metabolism ; ribosome ; Ribosomes ; Ribosomes - metabolism ; subunit association ; Transcription ; Translation ; Translation initiation</subject><ispartof>Nucleic acids research, 2012-03, Vol.40 (5), p.2054-2064</ispartof><rights>The Author(s) 2011. Published by Oxford University Press. 2011</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-6014608ea42330e3d8fe1548aa26a9c79275e64f445a707fe6289bf0790308593</citedby><cites>FETCH-LOGICAL-c480t-6014608ea42330e3d8fe1548aa26a9c79275e64f445a707fe6289bf0790308593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3299993/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3299993/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,1604,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22102582$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-157694$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Mandava, Chandra Sekhar</creatorcontrib><creatorcontrib>Peisker, Kristin</creatorcontrib><creatorcontrib>Ederth, Josefine</creatorcontrib><creatorcontrib>Kumar, Ranjeet</creatorcontrib><creatorcontrib>Ge, Xueliang</creatorcontrib><creatorcontrib>Szaflarski, Witold</creatorcontrib><creatorcontrib>Sanyal, Suparna</creatorcontrib><title>Bacterial ribosome requires multiple L12 dimers for efficient initiation and elongation of protein synthesis involving IF2 and EF-G</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>The ribosomal stalk in bacteria is composed of four or six copies of L12 proteins arranged in dimers that bind to the adjacent sites on protein L10, spanning 10 amino acids each from the L10 C-terminus. To study why multiple L12 dimers are required on the ribosome, we created a chromosomally engineered Escherichia coli strain, JE105, in which the peripheral L12 dimer binding site was deleted. Thus JE105 harbors ribosomes with only a single L12 dimer. Compared to MG1655, the parental strain with two L12 dimers, JE105 showed significant growth defect suggesting suboptimal function of the ribosomes with one L12 dimer. When tested in a cell-free reconstituted transcription-translation assay the synthesis of a full-length protein, firefly luciferase, was notably slower with JE105 70S ribosomes and 50S subunits. Further, in vitro analysis by fast kinetics revealed that single L12 dimer ribosomes from JE105 are defective in two major steps of translation, namely initiation and elongation involving translational GTPases IF2 and EF-G. Varying number of L12 dimers on the ribosome can be a mechanism in bacteria for modulating the rate of translation in response to growth condition.</description><subject>Amino acids</subject><subject>Biochemistry</subject><subject>Biokemi</subject><subject>Biologi med inriktning mot molekylärbiologi</subject><subject>Biology with specialization in Molecular Biology</subject><subject>C-Terminus</subject><subject>Chemistry</subject><subject>Dimerization</subject><subject>Elongation</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Growth conditions</subject><subject>Guanosine Triphosphate - metabolism</subject><subject>Guanosinetriphosphatase</subject><subject>IF2</subject><subject>Kemi</subject><subject>Kinetics</subject><subject>L12</subject><subject>L12 protein</subject><subject>Molecular Biology</subject><subject>Molekylärbiologi</subject><subject>NATURAL SCIENCES</subject><subject>NATURVETENSKAP</subject><subject>Peptide Chain Elongation, Translational</subject><subject>Peptide Chain Initiation, Translational</subject><subject>Peptide Elongation Factor G - metabolism</subject><subject>Prokaryotic Initiation Factor-2 - metabolism</subject><subject>Protein biosynthesis</subject><subject>protein synthesis</subject><subject>Ribosomal Proteins - chemistry</subject><subject>Ribosomal Proteins - metabolism</subject><subject>ribosome</subject><subject>Ribosomes</subject><subject>Ribosomes - metabolism</subject><subject>subunit association</subject><subject>Transcription</subject><subject>Translation</subject><subject>Translation initiation</subject><issn>0305-1048</issn><issn>1362-4962</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqFks1v1DAQxS0EokvhxB35BAcI9Vcc-1KplG6ptBIX4Gp5s-PUkNipnSzqmX8cQ5aKXsCXkeXfPM3zPISeU_KWEs1Pgk0n3bdECacP0IpyySqhJXuIVoSTuqJEqCP0JOevhFBBa_EYHTFGCasVW6Ef72w7QfK2x8lvY44D4AQ3s0-Q8TD3kx97wBvK8M4PkDJ2MWFwzrcewoR98JO3k48B27DD0MfQLdfo8JjiBD7gfBuma8g-F3wf-70PHb5as98dF-vq8il65Gyf4dmhHqPP64tP5x-qzcfLq_OzTdUKRaZKlvElUWAF45wA3ykHxY6ylkmr20azpgYpnBC1bUjjQDKlt440uvyDqjU_Rm8W3fwdxnlrxuQHm25NtN6891_OTEydmWdD60ZqUfDTBS_sALu2-E22v9d1_yX4a9PFveFMl8OLwKuDQIo3M-TJDD630Pc2QJyz0VLRpuFC_J9kije15KyQrxeyTTHnBO5uHkrMrziYEgdziEOhX_xt4Y79s_8CvFyAOI__VPoJDTa_xQ</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Mandava, Chandra Sekhar</creator><creator>Peisker, Kristin</creator><creator>Ederth, Josefine</creator><creator>Kumar, Ranjeet</creator><creator>Ge, Xueliang</creator><creator>Szaflarski, Witold</creator><creator>Sanyal, Suparna</creator><general>Oxford University Press</general><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QL</scope><scope>7TM</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope><scope>ACNBI</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DF2</scope><scope>ZZAVC</scope></search><sort><creationdate>20120301</creationdate><title>Bacterial ribosome requires multiple L12 dimers for efficient initiation and elongation of protein synthesis involving IF2 and EF-G</title><author>Mandava, Chandra Sekhar ; Peisker, Kristin ; Ederth, Josefine ; Kumar, Ranjeet ; Ge, Xueliang ; Szaflarski, Witold ; Sanyal, Suparna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-6014608ea42330e3d8fe1548aa26a9c79275e64f445a707fe6289bf0790308593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Amino acids</topic><topic>Biochemistry</topic><topic>Biokemi</topic><topic>Biologi med inriktning mot molekylärbiologi</topic><topic>Biology with specialization in Molecular Biology</topic><topic>C-Terminus</topic><topic>Chemistry</topic><topic>Dimerization</topic><topic>Elongation</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Growth conditions</topic><topic>Guanosine Triphosphate - metabolism</topic><topic>Guanosinetriphosphatase</topic><topic>IF2</topic><topic>Kemi</topic><topic>Kinetics</topic><topic>L12</topic><topic>L12 protein</topic><topic>Molecular Biology</topic><topic>Molekylärbiologi</topic><topic>NATURAL SCIENCES</topic><topic>NATURVETENSKAP</topic><topic>Peptide Chain Elongation, Translational</topic><topic>Peptide Chain Initiation, Translational</topic><topic>Peptide Elongation Factor G - metabolism</topic><topic>Prokaryotic Initiation Factor-2 - metabolism</topic><topic>Protein biosynthesis</topic><topic>protein synthesis</topic><topic>Ribosomal Proteins - chemistry</topic><topic>Ribosomal Proteins - metabolism</topic><topic>ribosome</topic><topic>Ribosomes</topic><topic>Ribosomes - metabolism</topic><topic>subunit association</topic><topic>Transcription</topic><topic>Translation</topic><topic>Translation initiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mandava, Chandra Sekhar</creatorcontrib><creatorcontrib>Peisker, Kristin</creatorcontrib><creatorcontrib>Ederth, Josefine</creatorcontrib><creatorcontrib>Kumar, Ranjeet</creatorcontrib><creatorcontrib>Ge, Xueliang</creatorcontrib><creatorcontrib>Szaflarski, Witold</creatorcontrib><creatorcontrib>Sanyal, Suparna</creatorcontrib><collection>Oxford University Press Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SWEPUB Uppsala universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Uppsala universitet</collection><collection>SwePub Articles full text</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mandava, Chandra Sekhar</au><au>Peisker, Kristin</au><au>Ederth, Josefine</au><au>Kumar, Ranjeet</au><au>Ge, Xueliang</au><au>Szaflarski, Witold</au><au>Sanyal, Suparna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bacterial ribosome requires multiple L12 dimers for efficient initiation and elongation of protein synthesis involving IF2 and EF-G</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2012-03-01</date><risdate>2012</risdate><volume>40</volume><issue>5</issue><spage>2054</spage><epage>2064</epage><pages>2054-2064</pages><issn>0305-1048</issn><issn>1362-4962</issn><eissn>1362-4962</eissn><abstract>The ribosomal stalk in bacteria is composed of four or six copies of L12 proteins arranged in dimers that bind to the adjacent sites on protein L10, spanning 10 amino acids each from the L10 C-terminus. To study why multiple L12 dimers are required on the ribosome, we created a chromosomally engineered Escherichia coli strain, JE105, in which the peripheral L12 dimer binding site was deleted. Thus JE105 harbors ribosomes with only a single L12 dimer. Compared to MG1655, the parental strain with two L12 dimers, JE105 showed significant growth defect suggesting suboptimal function of the ribosomes with one L12 dimer. When tested in a cell-free reconstituted transcription-translation assay the synthesis of a full-length protein, firefly luciferase, was notably slower with JE105 70S ribosomes and 50S subunits. Further, in vitro analysis by fast kinetics revealed that single L12 dimer ribosomes from JE105 are defective in two major steps of translation, namely initiation and elongation involving translational GTPases IF2 and EF-G. Varying number of L12 dimers on the ribosome can be a mechanism in bacteria for modulating the rate of translation in response to growth condition.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>22102582</pmid><doi>10.1093/nar/gkr1031</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2012-03, Vol.40 (5), p.2054-2064
issn 0305-1048
1362-4962
1362-4962
language eng
recordid cdi_swepub_primary_oai_DiVA_org_uu_157694
source PMC (PubMed Central); Oxford University Press Open Access
subjects Amino acids
Biochemistry
Biokemi
Biologi med inriktning mot molekylärbiologi
Biology with specialization in Molecular Biology
C-Terminus
Chemistry
Dimerization
Elongation
Escherichia coli
Escherichia coli - genetics
Escherichia coli - metabolism
Escherichia coli Proteins - chemistry
Escherichia coli Proteins - metabolism
Growth conditions
Guanosine Triphosphate - metabolism
Guanosinetriphosphatase
IF2
Kemi
Kinetics
L12
L12 protein
Molecular Biology
Molekylärbiologi
NATURAL SCIENCES
NATURVETENSKAP
Peptide Chain Elongation, Translational
Peptide Chain Initiation, Translational
Peptide Elongation Factor G - metabolism
Prokaryotic Initiation Factor-2 - metabolism
Protein biosynthesis
protein synthesis
Ribosomal Proteins - chemistry
Ribosomal Proteins - metabolism
ribosome
Ribosomes
Ribosomes - metabolism
subunit association
Transcription
Translation
Translation initiation
title Bacterial ribosome requires multiple L12 dimers for efficient initiation and elongation of protein synthesis involving IF2 and EF-G
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A16%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bacterial%20ribosome%20requires%20multiple%20L12%20dimers%20for%20efficient%20initiation%20and%20elongation%20of%20protein%20synthesis%20involving%20IF2%20and%20EF-G&rft.jtitle=Nucleic%20acids%20research&rft.au=Mandava,%20Chandra%20Sekhar&rft.date=2012-03-01&rft.volume=40&rft.issue=5&rft.spage=2054&rft.epage=2064&rft.pages=2054-2064&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkr1031&rft_dat=%3Cproquest_swepu%3E968177344%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c480t-6014608ea42330e3d8fe1548aa26a9c79275e64f445a707fe6289bf0790308593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=928375632&rft_id=info:pmid/22102582&rft_oup_id=10.1093/nar/gkr1031&rfr_iscdi=true