Loading…

Glass fiber reinforced high glass transition temperature thiol–ene networks

Although thiol–ene polymers have highly desirable processing properties the networks usually are limited to having characteristically low glass transition temperatures with low strength. This study is one of the first studies to examine a thiol–ene polymer thermoset matrix, having many industrial ad...

Full description

Saved in:
Bibliographic Details
Published in:Composites. Part A, Applied science and manufacturing Applied science and manufacturing, 2011, Vol.42 (11), p.1800-1808
Main Authors: Trey, Stacy M., Kristofer Gamstedt, E., Mäder, Edith, Jönsson, Sonny, Johansson, Mats
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c516t-d82993ad41ee1f9be87ed9d306f17454694133d7ba19525ac584a4346359b5d43
cites cdi_FETCH-LOGICAL-c516t-d82993ad41ee1f9be87ed9d306f17454694133d7ba19525ac584a4346359b5d43
container_end_page 1808
container_issue 11
container_start_page 1800
container_title Composites. Part A, Applied science and manufacturing
container_volume 42
creator Trey, Stacy M.
Kristofer Gamstedt, E.
Mäder, Edith
Jönsson, Sonny
Johansson, Mats
description Although thiol–ene polymers have highly desirable processing properties the networks usually are limited to having characteristically low glass transition temperatures with low strength. This study is one of the first studies to examine a thiol–ene polymer thermoset matrix, having many industrial advantages compared to conventional polymer matrices, reinforced with continuous E-glass fibers. In order to control the interphase, a mercapto functional sizing of 1 wt% is applied to the glass fibers. The resulting composites of 12 vol% fibers are comparable to glass fiber reinforced polyesters in terms of strength with Young’s modulus. This work contributes to the furthering of thiol–ene ultra-violet cure systems, with their range of advantageous properties, for use in a broader scope of applications by way of creating a stronger material based on a novel class of thermoset matrix.
doi_str_mv 10.1016/j.compositesa.2011.08.003
format article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_uu_161441</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359835X11002636</els_id><sourcerecordid>926321032</sourcerecordid><originalsourceid>FETCH-LOGICAL-c516t-d82993ad41ee1f9be87ed9d306f17454694133d7ba19525ac584a4346359b5d43</originalsourceid><addsrcrecordid>eNqNkctu1DAUQC0EEmXgGwgLhIRIsONH4mU1QEEqYgFF7K4c52bG00w82A4VO_6BP-RL8DRVxY6ubMlHx74-hDxjtGKUqde7yvr9wUeXMJqqpoxVtK0o5ffICWubtpStoPfznktdtlx-e0gexbijmeCanZCPZ6OJsRhch6EI6KbBB4t9sXWbbbG5PkvBTNnv_FQk3B8wmDQHLNLW-fHPr984YTFhuvLhMj4mDwYzRnxys67Ixbu3X9bvy_NPZx_Wp-ellUylsm9rrbnpBUNkg-6wbbDXPadqYI2QQmnBOO-bzjAta2lsHsIILlQeopO94CvyavHGKzzMHRyC25vwE7xx8MZ9PQUfNjDPwBQTWbUiL_-PBweqFvJu7su0BdFopTL-YsEPwX-fMSbYu2hxHM2Efo6ga8VrRnmdSb2QNvgYAw63akbhGBN28E9MOMYE2sIx1Yo8v7nFRGvGISexLt4KaqFoI-nxY54u3GA8mE3IzMXnLJKU1kzq6_HWC4G5zw-HAaJ1OOXmLqBN0Ht3h_f8BRZ3xrc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>926321032</pqid></control><display><type>article</type><title>Glass fiber reinforced high glass transition temperature thiol–ene networks</title><source>ScienceDirect Freedom Collection</source><creator>Trey, Stacy M. ; Kristofer Gamstedt, E. ; Mäder, Edith ; Jönsson, Sonny ; Johansson, Mats</creator><creatorcontrib>Trey, Stacy M. ; Kristofer Gamstedt, E. ; Mäder, Edith ; Jönsson, Sonny ; Johansson, Mats</creatorcontrib><description>Although thiol–ene polymers have highly desirable processing properties the networks usually are limited to having characteristically low glass transition temperatures with low strength. This study is one of the first studies to examine a thiol–ene polymer thermoset matrix, having many industrial advantages compared to conventional polymer matrices, reinforced with continuous E-glass fibers. In order to control the interphase, a mercapto functional sizing of 1 wt% is applied to the glass fibers. The resulting composites of 12 vol% fibers are comparable to glass fiber reinforced polyesters in terms of strength with Young’s modulus. This work contributes to the furthering of thiol–ene ultra-violet cure systems, with their range of advantageous properties, for use in a broader scope of applications by way of creating a stronger material based on a novel class of thermoset matrix.</description><identifier>ISSN: 1359-835X</identifier><identifier>ISSN: 1878-5840</identifier><identifier>EISSN: 1878-5840</identifier><identifier>DOI: 10.1016/j.compositesa.2011.08.003</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>A. Glass fibers ; A. Thermoplastic resin ; Applied sciences ; B. Fiber/matrix bond ; B. Interphase ; Composites ; Cures ; Exact sciences and technology ; Fiber/matrix bond ; Fibers ; Forms of application and semi-finished materials ; Glass fiber reinforced plastics ; Glass fibers ; glass transition ; Glass transition temperature ; Interphase ; Mathematical analysis ; Networks ; polyesters ; Polymer industry, paints, wood ; Strength ; Technology of polymers ; Thermoplastic resin ; Thermosetting resins</subject><ispartof>Composites. Part A, Applied science and manufacturing, 2011, Vol.42 (11), p.1800-1808</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c516t-d82993ad41ee1f9be87ed9d306f17454694133d7ba19525ac584a4346359b5d43</citedby><cites>FETCH-LOGICAL-c516t-d82993ad41ee1f9be87ed9d306f17454694133d7ba19525ac584a4346359b5d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,4010,27900,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24607504$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-47966$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:ri:diva-6245$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-161441$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Trey, Stacy M.</creatorcontrib><creatorcontrib>Kristofer Gamstedt, E.</creatorcontrib><creatorcontrib>Mäder, Edith</creatorcontrib><creatorcontrib>Jönsson, Sonny</creatorcontrib><creatorcontrib>Johansson, Mats</creatorcontrib><title>Glass fiber reinforced high glass transition temperature thiol–ene networks</title><title>Composites. Part A, Applied science and manufacturing</title><description>Although thiol–ene polymers have highly desirable processing properties the networks usually are limited to having characteristically low glass transition temperatures with low strength. This study is one of the first studies to examine a thiol–ene polymer thermoset matrix, having many industrial advantages compared to conventional polymer matrices, reinforced with continuous E-glass fibers. In order to control the interphase, a mercapto functional sizing of 1 wt% is applied to the glass fibers. The resulting composites of 12 vol% fibers are comparable to glass fiber reinforced polyesters in terms of strength with Young’s modulus. This work contributes to the furthering of thiol–ene ultra-violet cure systems, with their range of advantageous properties, for use in a broader scope of applications by way of creating a stronger material based on a novel class of thermoset matrix.</description><subject>A. Glass fibers</subject><subject>A. Thermoplastic resin</subject><subject>Applied sciences</subject><subject>B. Fiber/matrix bond</subject><subject>B. Interphase</subject><subject>Composites</subject><subject>Cures</subject><subject>Exact sciences and technology</subject><subject>Fiber/matrix bond</subject><subject>Fibers</subject><subject>Forms of application and semi-finished materials</subject><subject>Glass fiber reinforced plastics</subject><subject>Glass fibers</subject><subject>glass transition</subject><subject>Glass transition temperature</subject><subject>Interphase</subject><subject>Mathematical analysis</subject><subject>Networks</subject><subject>polyesters</subject><subject>Polymer industry, paints, wood</subject><subject>Strength</subject><subject>Technology of polymers</subject><subject>Thermoplastic resin</subject><subject>Thermosetting resins</subject><issn>1359-835X</issn><issn>1878-5840</issn><issn>1878-5840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkctu1DAUQC0EEmXgGwgLhIRIsONH4mU1QEEqYgFF7K4c52bG00w82A4VO_6BP-RL8DRVxY6ubMlHx74-hDxjtGKUqde7yvr9wUeXMJqqpoxVtK0o5ffICWubtpStoPfznktdtlx-e0gexbijmeCanZCPZ6OJsRhch6EI6KbBB4t9sXWbbbG5PkvBTNnv_FQk3B8wmDQHLNLW-fHPr984YTFhuvLhMj4mDwYzRnxys67Ixbu3X9bvy_NPZx_Wp-ellUylsm9rrbnpBUNkg-6wbbDXPadqYI2QQmnBOO-bzjAta2lsHsIILlQeopO94CvyavHGKzzMHRyC25vwE7xx8MZ9PQUfNjDPwBQTWbUiL_-PBweqFvJu7su0BdFopTL-YsEPwX-fMSbYu2hxHM2Efo6ga8VrRnmdSb2QNvgYAw63akbhGBN28E9MOMYE2sIx1Yo8v7nFRGvGISexLt4KaqFoI-nxY54u3GA8mE3IzMXnLJKU1kzq6_HWC4G5zw-HAaJ1OOXmLqBN0Ht3h_f8BRZ3xrc</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Trey, Stacy M.</creator><creator>Kristofer Gamstedt, E.</creator><creator>Mäder, Edith</creator><creator>Jönsson, Sonny</creator><creator>Johansson, Mats</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8V</scope><scope>DF2</scope></search><sort><creationdate>2011</creationdate><title>Glass fiber reinforced high glass transition temperature thiol–ene networks</title><author>Trey, Stacy M. ; Kristofer Gamstedt, E. ; Mäder, Edith ; Jönsson, Sonny ; Johansson, Mats</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c516t-d82993ad41ee1f9be87ed9d306f17454694133d7ba19525ac584a4346359b5d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>A. Glass fibers</topic><topic>A. Thermoplastic resin</topic><topic>Applied sciences</topic><topic>B. Fiber/matrix bond</topic><topic>B. Interphase</topic><topic>Composites</topic><topic>Cures</topic><topic>Exact sciences and technology</topic><topic>Fiber/matrix bond</topic><topic>Fibers</topic><topic>Forms of application and semi-finished materials</topic><topic>Glass fiber reinforced plastics</topic><topic>Glass fibers</topic><topic>glass transition</topic><topic>Glass transition temperature</topic><topic>Interphase</topic><topic>Mathematical analysis</topic><topic>Networks</topic><topic>polyesters</topic><topic>Polymer industry, paints, wood</topic><topic>Strength</topic><topic>Technology of polymers</topic><topic>Thermoplastic resin</topic><topic>Thermosetting resins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trey, Stacy M.</creatorcontrib><creatorcontrib>Kristofer Gamstedt, E.</creatorcontrib><creatorcontrib>Mäder, Edith</creatorcontrib><creatorcontrib>Jönsson, Sonny</creatorcontrib><creatorcontrib>Johansson, Mats</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><collection>SWEPUB Uppsala universitet</collection><jtitle>Composites. Part A, Applied science and manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trey, Stacy M.</au><au>Kristofer Gamstedt, E.</au><au>Mäder, Edith</au><au>Jönsson, Sonny</au><au>Johansson, Mats</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glass fiber reinforced high glass transition temperature thiol–ene networks</atitle><jtitle>Composites. Part A, Applied science and manufacturing</jtitle><date>2011</date><risdate>2011</risdate><volume>42</volume><issue>11</issue><spage>1800</spage><epage>1808</epage><pages>1800-1808</pages><issn>1359-835X</issn><issn>1878-5840</issn><eissn>1878-5840</eissn><abstract>Although thiol–ene polymers have highly desirable processing properties the networks usually are limited to having characteristically low glass transition temperatures with low strength. This study is one of the first studies to examine a thiol–ene polymer thermoset matrix, having many industrial advantages compared to conventional polymer matrices, reinforced with continuous E-glass fibers. In order to control the interphase, a mercapto functional sizing of 1 wt% is applied to the glass fibers. The resulting composites of 12 vol% fibers are comparable to glass fiber reinforced polyesters in terms of strength with Young’s modulus. This work contributes to the furthering of thiol–ene ultra-violet cure systems, with their range of advantageous properties, for use in a broader scope of applications by way of creating a stronger material based on a novel class of thermoset matrix.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compositesa.2011.08.003</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1359-835X
ispartof Composites. Part A, Applied science and manufacturing, 2011, Vol.42 (11), p.1800-1808
issn 1359-835X
1878-5840
1878-5840
language eng
recordid cdi_swepub_primary_oai_DiVA_org_uu_161441
source ScienceDirect Freedom Collection
subjects A. Glass fibers
A. Thermoplastic resin
Applied sciences
B. Fiber/matrix bond
B. Interphase
Composites
Cures
Exact sciences and technology
Fiber/matrix bond
Fibers
Forms of application and semi-finished materials
Glass fiber reinforced plastics
Glass fibers
glass transition
Glass transition temperature
Interphase
Mathematical analysis
Networks
polyesters
Polymer industry, paints, wood
Strength
Technology of polymers
Thermoplastic resin
Thermosetting resins
title Glass fiber reinforced high glass transition temperature thiol–ene networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T15%3A02%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glass%20fiber%20reinforced%20high%20glass%20transition%20temperature%20thiol%E2%80%93ene%20networks&rft.jtitle=Composites.%20Part%20A,%20Applied%20science%20and%20manufacturing&rft.au=Trey,%20Stacy%20M.&rft.date=2011&rft.volume=42&rft.issue=11&rft.spage=1800&rft.epage=1808&rft.pages=1800-1808&rft.issn=1359-835X&rft.eissn=1878-5840&rft_id=info:doi/10.1016/j.compositesa.2011.08.003&rft_dat=%3Cproquest_swepu%3E926321032%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c516t-d82993ad41ee1f9be87ed9d306f17454694133d7ba19525ac584a4346359b5d43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=926321032&rft_id=info:pmid/&rfr_iscdi=true