Loading…
Glass fiber reinforced high glass transition temperature thiol–ene networks
Although thiol–ene polymers have highly desirable processing properties the networks usually are limited to having characteristically low glass transition temperatures with low strength. This study is one of the first studies to examine a thiol–ene polymer thermoset matrix, having many industrial ad...
Saved in:
Published in: | Composites. Part A, Applied science and manufacturing Applied science and manufacturing, 2011, Vol.42 (11), p.1800-1808 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c516t-d82993ad41ee1f9be87ed9d306f17454694133d7ba19525ac584a4346359b5d43 |
---|---|
cites | cdi_FETCH-LOGICAL-c516t-d82993ad41ee1f9be87ed9d306f17454694133d7ba19525ac584a4346359b5d43 |
container_end_page | 1808 |
container_issue | 11 |
container_start_page | 1800 |
container_title | Composites. Part A, Applied science and manufacturing |
container_volume | 42 |
creator | Trey, Stacy M. Kristofer Gamstedt, E. Mäder, Edith Jönsson, Sonny Johansson, Mats |
description | Although thiol–ene polymers have highly desirable processing properties the networks usually are limited to having characteristically low glass transition temperatures with low strength. This study is one of the first studies to examine a thiol–ene polymer thermoset matrix, having many industrial advantages compared to conventional polymer matrices, reinforced with continuous E-glass fibers. In order to control the interphase, a mercapto functional sizing of 1
wt% is applied to the glass fibers. The resulting composites of 12
vol% fibers are comparable to glass fiber reinforced polyesters in terms of strength with Young’s modulus. This work contributes to the furthering of thiol–ene ultra-violet cure systems, with their range of advantageous properties, for use in a broader scope of applications by way of creating a stronger material based on a novel class of thermoset matrix. |
doi_str_mv | 10.1016/j.compositesa.2011.08.003 |
format | article |
fullrecord | <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_uu_161441</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359835X11002636</els_id><sourcerecordid>926321032</sourcerecordid><originalsourceid>FETCH-LOGICAL-c516t-d82993ad41ee1f9be87ed9d306f17454694133d7ba19525ac584a4346359b5d43</originalsourceid><addsrcrecordid>eNqNkctu1DAUQC0EEmXgGwgLhIRIsONH4mU1QEEqYgFF7K4c52bG00w82A4VO_6BP-RL8DRVxY6ubMlHx74-hDxjtGKUqde7yvr9wUeXMJqqpoxVtK0o5ffICWubtpStoPfznktdtlx-e0gexbijmeCanZCPZ6OJsRhch6EI6KbBB4t9sXWbbbG5PkvBTNnv_FQk3B8wmDQHLNLW-fHPr984YTFhuvLhMj4mDwYzRnxys67Ixbu3X9bvy_NPZx_Wp-ellUylsm9rrbnpBUNkg-6wbbDXPadqYI2QQmnBOO-bzjAta2lsHsIILlQeopO94CvyavHGKzzMHRyC25vwE7xx8MZ9PQUfNjDPwBQTWbUiL_-PBweqFvJu7su0BdFopTL-YsEPwX-fMSbYu2hxHM2Efo6ga8VrRnmdSb2QNvgYAw63akbhGBN28E9MOMYE2sIx1Yo8v7nFRGvGISexLt4KaqFoI-nxY54u3GA8mE3IzMXnLJKU1kzq6_HWC4G5zw-HAaJ1OOXmLqBN0Ht3h_f8BRZ3xrc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>926321032</pqid></control><display><type>article</type><title>Glass fiber reinforced high glass transition temperature thiol–ene networks</title><source>ScienceDirect Freedom Collection</source><creator>Trey, Stacy M. ; Kristofer Gamstedt, E. ; Mäder, Edith ; Jönsson, Sonny ; Johansson, Mats</creator><creatorcontrib>Trey, Stacy M. ; Kristofer Gamstedt, E. ; Mäder, Edith ; Jönsson, Sonny ; Johansson, Mats</creatorcontrib><description>Although thiol–ene polymers have highly desirable processing properties the networks usually are limited to having characteristically low glass transition temperatures with low strength. This study is one of the first studies to examine a thiol–ene polymer thermoset matrix, having many industrial advantages compared to conventional polymer matrices, reinforced with continuous E-glass fibers. In order to control the interphase, a mercapto functional sizing of 1
wt% is applied to the glass fibers. The resulting composites of 12
vol% fibers are comparable to glass fiber reinforced polyesters in terms of strength with Young’s modulus. This work contributes to the furthering of thiol–ene ultra-violet cure systems, with their range of advantageous properties, for use in a broader scope of applications by way of creating a stronger material based on a novel class of thermoset matrix.</description><identifier>ISSN: 1359-835X</identifier><identifier>ISSN: 1878-5840</identifier><identifier>EISSN: 1878-5840</identifier><identifier>DOI: 10.1016/j.compositesa.2011.08.003</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>A. Glass fibers ; A. Thermoplastic resin ; Applied sciences ; B. Fiber/matrix bond ; B. Interphase ; Composites ; Cures ; Exact sciences and technology ; Fiber/matrix bond ; Fibers ; Forms of application and semi-finished materials ; Glass fiber reinforced plastics ; Glass fibers ; glass transition ; Glass transition temperature ; Interphase ; Mathematical analysis ; Networks ; polyesters ; Polymer industry, paints, wood ; Strength ; Technology of polymers ; Thermoplastic resin ; Thermosetting resins</subject><ispartof>Composites. Part A, Applied science and manufacturing, 2011, Vol.42 (11), p.1800-1808</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c516t-d82993ad41ee1f9be87ed9d306f17454694133d7ba19525ac584a4346359b5d43</citedby><cites>FETCH-LOGICAL-c516t-d82993ad41ee1f9be87ed9d306f17454694133d7ba19525ac584a4346359b5d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,4010,27900,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24607504$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-47966$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:ri:diva-6245$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-161441$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Trey, Stacy M.</creatorcontrib><creatorcontrib>Kristofer Gamstedt, E.</creatorcontrib><creatorcontrib>Mäder, Edith</creatorcontrib><creatorcontrib>Jönsson, Sonny</creatorcontrib><creatorcontrib>Johansson, Mats</creatorcontrib><title>Glass fiber reinforced high glass transition temperature thiol–ene networks</title><title>Composites. Part A, Applied science and manufacturing</title><description>Although thiol–ene polymers have highly desirable processing properties the networks usually are limited to having characteristically low glass transition temperatures with low strength. This study is one of the first studies to examine a thiol–ene polymer thermoset matrix, having many industrial advantages compared to conventional polymer matrices, reinforced with continuous E-glass fibers. In order to control the interphase, a mercapto functional sizing of 1
wt% is applied to the glass fibers. The resulting composites of 12
vol% fibers are comparable to glass fiber reinforced polyesters in terms of strength with Young’s modulus. This work contributes to the furthering of thiol–ene ultra-violet cure systems, with their range of advantageous properties, for use in a broader scope of applications by way of creating a stronger material based on a novel class of thermoset matrix.</description><subject>A. Glass fibers</subject><subject>A. Thermoplastic resin</subject><subject>Applied sciences</subject><subject>B. Fiber/matrix bond</subject><subject>B. Interphase</subject><subject>Composites</subject><subject>Cures</subject><subject>Exact sciences and technology</subject><subject>Fiber/matrix bond</subject><subject>Fibers</subject><subject>Forms of application and semi-finished materials</subject><subject>Glass fiber reinforced plastics</subject><subject>Glass fibers</subject><subject>glass transition</subject><subject>Glass transition temperature</subject><subject>Interphase</subject><subject>Mathematical analysis</subject><subject>Networks</subject><subject>polyesters</subject><subject>Polymer industry, paints, wood</subject><subject>Strength</subject><subject>Technology of polymers</subject><subject>Thermoplastic resin</subject><subject>Thermosetting resins</subject><issn>1359-835X</issn><issn>1878-5840</issn><issn>1878-5840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqNkctu1DAUQC0EEmXgGwgLhIRIsONH4mU1QEEqYgFF7K4c52bG00w82A4VO_6BP-RL8DRVxY6ubMlHx74-hDxjtGKUqde7yvr9wUeXMJqqpoxVtK0o5ffICWubtpStoPfznktdtlx-e0gexbijmeCanZCPZ6OJsRhch6EI6KbBB4t9sXWbbbG5PkvBTNnv_FQk3B8wmDQHLNLW-fHPr984YTFhuvLhMj4mDwYzRnxys67Ixbu3X9bvy_NPZx_Wp-ellUylsm9rrbnpBUNkg-6wbbDXPadqYI2QQmnBOO-bzjAta2lsHsIILlQeopO94CvyavHGKzzMHRyC25vwE7xx8MZ9PQUfNjDPwBQTWbUiL_-PBweqFvJu7su0BdFopTL-YsEPwX-fMSbYu2hxHM2Efo6ga8VrRnmdSb2QNvgYAw63akbhGBN28E9MOMYE2sIx1Yo8v7nFRGvGISexLt4KaqFoI-nxY54u3GA8mE3IzMXnLJKU1kzq6_HWC4G5zw-HAaJ1OOXmLqBN0Ht3h_f8BRZ3xrc</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>Trey, Stacy M.</creator><creator>Kristofer Gamstedt, E.</creator><creator>Mäder, Edith</creator><creator>Jönsson, Sonny</creator><creator>Johansson, Mats</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8V</scope><scope>DF2</scope></search><sort><creationdate>2011</creationdate><title>Glass fiber reinforced high glass transition temperature thiol–ene networks</title><author>Trey, Stacy M. ; Kristofer Gamstedt, E. ; Mäder, Edith ; Jönsson, Sonny ; Johansson, Mats</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c516t-d82993ad41ee1f9be87ed9d306f17454694133d7ba19525ac584a4346359b5d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>A. Glass fibers</topic><topic>A. Thermoplastic resin</topic><topic>Applied sciences</topic><topic>B. Fiber/matrix bond</topic><topic>B. Interphase</topic><topic>Composites</topic><topic>Cures</topic><topic>Exact sciences and technology</topic><topic>Fiber/matrix bond</topic><topic>Fibers</topic><topic>Forms of application and semi-finished materials</topic><topic>Glass fiber reinforced plastics</topic><topic>Glass fibers</topic><topic>glass transition</topic><topic>Glass transition temperature</topic><topic>Interphase</topic><topic>Mathematical analysis</topic><topic>Networks</topic><topic>polyesters</topic><topic>Polymer industry, paints, wood</topic><topic>Strength</topic><topic>Technology of polymers</topic><topic>Thermoplastic resin</topic><topic>Thermosetting resins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trey, Stacy M.</creatorcontrib><creatorcontrib>Kristofer Gamstedt, E.</creatorcontrib><creatorcontrib>Mäder, Edith</creatorcontrib><creatorcontrib>Jönsson, Sonny</creatorcontrib><creatorcontrib>Johansson, Mats</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><collection>SWEPUB Uppsala universitet</collection><jtitle>Composites. Part A, Applied science and manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trey, Stacy M.</au><au>Kristofer Gamstedt, E.</au><au>Mäder, Edith</au><au>Jönsson, Sonny</au><au>Johansson, Mats</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glass fiber reinforced high glass transition temperature thiol–ene networks</atitle><jtitle>Composites. Part A, Applied science and manufacturing</jtitle><date>2011</date><risdate>2011</risdate><volume>42</volume><issue>11</issue><spage>1800</spage><epage>1808</epage><pages>1800-1808</pages><issn>1359-835X</issn><issn>1878-5840</issn><eissn>1878-5840</eissn><abstract>Although thiol–ene polymers have highly desirable processing properties the networks usually are limited to having characteristically low glass transition temperatures with low strength. This study is one of the first studies to examine a thiol–ene polymer thermoset matrix, having many industrial advantages compared to conventional polymer matrices, reinforced with continuous E-glass fibers. In order to control the interphase, a mercapto functional sizing of 1
wt% is applied to the glass fibers. The resulting composites of 12
vol% fibers are comparable to glass fiber reinforced polyesters in terms of strength with Young’s modulus. This work contributes to the furthering of thiol–ene ultra-violet cure systems, with their range of advantageous properties, for use in a broader scope of applications by way of creating a stronger material based on a novel class of thermoset matrix.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compositesa.2011.08.003</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-835X |
ispartof | Composites. Part A, Applied science and manufacturing, 2011, Vol.42 (11), p.1800-1808 |
issn | 1359-835X 1878-5840 1878-5840 |
language | eng |
recordid | cdi_swepub_primary_oai_DiVA_org_uu_161441 |
source | ScienceDirect Freedom Collection |
subjects | A. Glass fibers A. Thermoplastic resin Applied sciences B. Fiber/matrix bond B. Interphase Composites Cures Exact sciences and technology Fiber/matrix bond Fibers Forms of application and semi-finished materials Glass fiber reinforced plastics Glass fibers glass transition Glass transition temperature Interphase Mathematical analysis Networks polyesters Polymer industry, paints, wood Strength Technology of polymers Thermoplastic resin Thermosetting resins |
title | Glass fiber reinforced high glass transition temperature thiol–ene networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T15%3A02%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glass%20fiber%20reinforced%20high%20glass%20transition%20temperature%20thiol%E2%80%93ene%20networks&rft.jtitle=Composites.%20Part%20A,%20Applied%20science%20and%20manufacturing&rft.au=Trey,%20Stacy%20M.&rft.date=2011&rft.volume=42&rft.issue=11&rft.spage=1800&rft.epage=1808&rft.pages=1800-1808&rft.issn=1359-835X&rft.eissn=1878-5840&rft_id=info:doi/10.1016/j.compositesa.2011.08.003&rft_dat=%3Cproquest_swepu%3E926321032%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c516t-d82993ad41ee1f9be87ed9d306f17454694133d7ba19525ac584a4346359b5d43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=926321032&rft_id=info:pmid/&rfr_iscdi=true |