Loading…
Hole transport in single crystal synthetic diamond at low temperatures
Investigating the effects of local scattering mechanisms is of great importance to understand charge transport in semiconductors. This article reports measurements of the hole transport properties of boron-doped (100) single-crystalline chemical vapor deposited diamond. A Time-of-Flight measurement...
Saved in:
Published in: | Applied physics letters 2013-04, Vol.102 (15), p.152113 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Investigating the effects of local scattering mechanisms is of great importance to understand charge transport in semiconductors. This article reports measurements of the hole transport properties of boron-doped (100) single-crystalline chemical vapor deposited diamond. A Time-of-Flight measurement using a 213 nm, pulsed UV laser for excitation, was performed on high-purity single-crystalline diamonds to measure the hole drift velocity in the low-injection regime. The measurements were carried out in the temperature range 10-80 K. The results obtained are directly applicable to low-temperature detector applications. By comparing our data to Monte-Carlo simulations, a detailed understanding of the dominating hole scattering mechanisms is obtained. |
---|---|
ISSN: | 0003-6951 1077-3118 1077-3118 |
DOI: | 10.1063/1.4802449 |