Loading…
Laser desorption/ionization mass spectrometry of dye-sensitized solar cells: identification of the dye-electrolyte interaction
Dye‐sensitized solar cells (DSCs) have great potential to provide sustainable electricity from sunlight. The photoanode in DSCs consists of a dye‐sensitized metal oxide film deposited on a conductive substrate. This configuration makes the photoanode a perfect sample for laser desorption/ionization...
Saved in:
Published in: | Journal of mass spectrometry. 2015-05, Vol.50 (5), p.734-739 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Dye‐sensitized solar cells (DSCs) have great potential to provide sustainable electricity from sunlight. The photoanode in DSCs consists of a dye‐sensitized metal oxide film deposited on a conductive substrate. This configuration makes the photoanode a perfect sample for laser desorption/ionization mass spectrometry (LDI‐MS). We applied LDI‐MS for the study of molecular interactions between a dye and electrolyte on the surface of a TiO2 photoanode. We found that a dye containing polyoxyethylene groups forms complexes with alkali metal cations from the electrolyte, while a dye substituted with alkoxy groups does not. Guanidinium ion forms adducts with neither of the two dyes. Copyright © 2015 John Wiley & Sons, Ltd. |
---|---|
ISSN: | 1076-5174 1096-9888 1096-9888 |
DOI: | 10.1002/jms.3582 |