Loading…

Experimental Studies of (HCO+)-C-13 Recombining with Electrons at Energies between 2-50 000 meV

An investigation into the dissociative recombination process for (HCO+)-C-13 using merged ion-electron beam methods has been performed at the heavy ion storage ring CRYRING, Stockholm, Sweden. We have measured the branching fractions of the different product channels at similar to 0 eV collision ene...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2014, Vol.118 (31), p.6034
Main Authors: Hamberg, Mathias, Kashperka, Iryna, Thomas, Richard D., Roueff, Evelyne, Zhaunerchyk, Vitali, Danielsson, Mathias, af Ugglas, Magnus, Österdahl, Fabian, Vigren, Erik, Kaminska, Magdalena, Källberg, Anders, Simonsson, Ansgar, Paál, Andras, Gerin, Maryvonne, Larsson, Mats, Geppert, Wolf D.
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An investigation into the dissociative recombination process for (HCO+)-C-13 using merged ion-electron beam methods has been performed at the heavy ion storage ring CRYRING, Stockholm, Sweden. We have measured the branching fractions of the different product channels at similar to 0 eV collision energy to be the following: CO + H 87 +/- 2%, OH + C 9 +/- 2%, and O + CH 4 +/- 2%. The formation of electronically excited CO in the dominant reaction channel has also been studied, and we report the following tentative branching fractions for the different CO product electronic states: CO(X (1)Sigma(+)) + H, 54 +/- 10%; CO(a (3)Pi) + H, 23 +/- 4%; and CO(a' (3)Sigma(+)) + H, 23 +/- 4%. The absolute cross section between similar to 2-50 000 meV was measured and showed resonance structures between 3 and 15 eV. The cross section was fitted in the energy range relevant to astrophysics, i.e., between 1 and 300 meV, and was found to follow the expression sigma = 1.3 +/- 0.3 X 10(-16) E-1.29 +/- 0.05 cm(2) and the corresponding thermal rate constant was determined to be k(T) = 2.0 +/- 0.4 X 10(-7)(T/300)(-0.79 +/- 0.05) cm(3) s(-1). Radioastronomical observations with the IRAM 30 m telescope of HCO+ toward the Red Rectangle yielded an upper column density limit of 4 X 10(11) cm(-2) of HCO+ at the 1 sigma level in that object, indicating that previous claims that the dissociative recombination of HCO+ plays an important role in the production of excited CO molecules emitting the observed Cameron bands in that object are not supported.
ISSN:1089-5639
1520-5215
DOI:10.1021/jp5032306