Loading…

Autoregulation of the tufB operon in Salmonella

Summary In Salmonella enterica and related species, translation elongation factor EF‐Tu is encoded by two widely separated but near‐identical genes, tufA and tufB. Two thirds of EF‐Tu is expressed from tufA with the remaining one third coming from tufB. Inactivation of tufA is partly compensated by...

Full description

Saved in:
Bibliographic Details
Published in:Molecular microbiology 2016-06, Vol.100 (6), p.1004-1016
Main Authors: Brandis, Gerrit, Bergman, Jessica M., Hughes, Diarmaid
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4234-30671d517892281b8ed2dc3c5d63582c006ddc4315aaeeb471bd6d14939862b93
cites cdi_FETCH-LOGICAL-c4234-30671d517892281b8ed2dc3c5d63582c006ddc4315aaeeb471bd6d14939862b93
container_end_page 1016
container_issue 6
container_start_page 1004
container_title Molecular microbiology
container_volume 100
creator Brandis, Gerrit
Bergman, Jessica M.
Hughes, Diarmaid
description Summary In Salmonella enterica and related species, translation elongation factor EF‐Tu is encoded by two widely separated but near‐identical genes, tufA and tufB. Two thirds of EF‐Tu is expressed from tufA with the remaining one third coming from tufB. Inactivation of tufA is partly compensated by a doubling in the amount of EF‐TuB but the mechanism of this up‐regulation is unknown. By experimental evolution selecting for improved growth rate in a strain with an inactive tufA we selected six different noncoding or synonymous point mutations close to the tufB start codon. Based on these results we constructed a total of 161 different point mutations around the tufB start codon, as well as tufB 3′‐truncations, and measured tufB expression using tufB‐yfp transcriptional and translational fusions. The expression data support the presence of two competing stem‐loop structures that can form in the 5′‐end of the tufB mRNA. Formation of the ‘closed’ structure leads to Rho‐dependent transcriptional termination of the tufB mRNA. We propose a model in which translational speed is used as a sensor for EF‐Tu concentration and where the expression of tufB is post‐transcriptionally regulated. This model describes for the first time how expression of the most abundant Salmonella protein is autoregulated. The amount of EF‐Tu expressed from tufB can vary two‐fold but the mechanism of this regulation is unknown. Based on analysis of selected and constructed mutations, and using transcriptional and translational fusions, we propose a model where translational speed is used as a sensor for EF‐Tu concentration and where the expression of tufB is post‐transcriptionally regulated. This model describes for the first time how expression of the most abundant Salmonella protein is autoregulated.
doi_str_mv 10.1111/mmi.13364
format article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_uu_235218</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1827881367</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4234-30671d517892281b8ed2dc3c5d63582c006ddc4315aaeeb471bd6d14939862b93</originalsourceid><addsrcrecordid>eNqF0U1LwzAcBvAgis6Xg19ACl4U7Jb3Jsc5X8HhwRe8hbbJtNI2M2kYfnszO3cQxFwC4ceT5P8AcIjgEMU1appqiAjhdAMMEOEsxZKJTTCAksGUCPyyA3a9f4cQEcjJNtjBXBLKJB2A0Th01pnXUOddZdvEzpLuzSRdmJ0ndm5cPKra5CGvG9uaus73wdYsr705WO174Onq8nFyk97dX99OxndpSTGhabwnQ5qhTEiMBSqE0ViXpGSaEyZwCSHXuqQEsTw3pqAZKjTXiEoiBceFJHvgrM_1CzMPhZq7qsndp7J5pS6q57Gy7lWFoDBhGInIT3o-d_YjGN-ppvLl8sGtscErJHAmRJxN9j_N4vAyRiSP9PgXfbfBtfHfS0URwhLiqE57VTrrvTOz9WMRVMt-VOxHffcT7dEqMRSN0Wv5U0gEox4sqtp8_p2kptPbPvILshOWUg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1794112902</pqid></control><display><type>article</type><title>Autoregulation of the tufB operon in Salmonella</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Brandis, Gerrit ; Bergman, Jessica M. ; Hughes, Diarmaid</creator><creatorcontrib>Brandis, Gerrit ; Bergman, Jessica M. ; Hughes, Diarmaid</creatorcontrib><description>Summary In Salmonella enterica and related species, translation elongation factor EF‐Tu is encoded by two widely separated but near‐identical genes, tufA and tufB. Two thirds of EF‐Tu is expressed from tufA with the remaining one third coming from tufB. Inactivation of tufA is partly compensated by a doubling in the amount of EF‐TuB but the mechanism of this up‐regulation is unknown. By experimental evolution selecting for improved growth rate in a strain with an inactive tufA we selected six different noncoding or synonymous point mutations close to the tufB start codon. Based on these results we constructed a total of 161 different point mutations around the tufB start codon, as well as tufB 3′‐truncations, and measured tufB expression using tufB‐yfp transcriptional and translational fusions. The expression data support the presence of two competing stem‐loop structures that can form in the 5′‐end of the tufB mRNA. Formation of the ‘closed’ structure leads to Rho‐dependent transcriptional termination of the tufB mRNA. We propose a model in which translational speed is used as a sensor for EF‐Tu concentration and where the expression of tufB is post‐transcriptionally regulated. This model describes for the first time how expression of the most abundant Salmonella protein is autoregulated. The amount of EF‐Tu expressed from tufB can vary two‐fold but the mechanism of this regulation is unknown. Based on analysis of selected and constructed mutations, and using transcriptional and translational fusions, we propose a model where translational speed is used as a sensor for EF‐Tu concentration and where the expression of tufB is post‐transcriptionally regulated. This model describes for the first time how expression of the most abundant Salmonella protein is autoregulated.</description><identifier>ISSN: 0950-382X</identifier><identifier>ISSN: 1365-2958</identifier><identifier>EISSN: 1365-2958</identifier><identifier>DOI: 10.1111/mmi.13364</identifier><identifier>PMID: 26934594</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Bacterial Proteins ; Biologi med inriktning mot mikrobiologi ; Biology with specialization in Microbiology ; EF-Tu ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Genes ; Genes, Bacterial ; Homeostasis ; Microbiology ; Mikrobiologi ; Molecular Genetics ; Molekylär genetik ; Mutation ; Operon ; Peptide Elongation Factor Tu - genetics ; Peptide Elongation Factor Tu - metabolism ; Point Mutation ; post-transcriptional regulation ; Protein Biosynthesis ; Rho ; RNA, Bacterial - genetics ; RNA, Bacterial - metabolism ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Salmonella ; Salmonella - genetics ; Salmonella - metabolism ; Salmonella enterica ; Transcription, Genetic ; tufA ; tufB</subject><ispartof>Molecular microbiology, 2016-06, Vol.100 (6), p.1004-1016</ispartof><rights>2016 John Wiley &amp; Sons Ltd</rights><rights>2016 John Wiley &amp; Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4234-30671d517892281b8ed2dc3c5d63582c006ddc4315aaeeb471bd6d14939862b93</citedby><cites>FETCH-LOGICAL-c4234-30671d517892281b8ed2dc3c5d63582c006ddc4315aaeeb471bd6d14939862b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26934594$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-235218$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Brandis, Gerrit</creatorcontrib><creatorcontrib>Bergman, Jessica M.</creatorcontrib><creatorcontrib>Hughes, Diarmaid</creatorcontrib><title>Autoregulation of the tufB operon in Salmonella</title><title>Molecular microbiology</title><addtitle>Mol Microbiol</addtitle><description>Summary In Salmonella enterica and related species, translation elongation factor EF‐Tu is encoded by two widely separated but near‐identical genes, tufA and tufB. Two thirds of EF‐Tu is expressed from tufA with the remaining one third coming from tufB. Inactivation of tufA is partly compensated by a doubling in the amount of EF‐TuB but the mechanism of this up‐regulation is unknown. By experimental evolution selecting for improved growth rate in a strain with an inactive tufA we selected six different noncoding or synonymous point mutations close to the tufB start codon. Based on these results we constructed a total of 161 different point mutations around the tufB start codon, as well as tufB 3′‐truncations, and measured tufB expression using tufB‐yfp transcriptional and translational fusions. The expression data support the presence of two competing stem‐loop structures that can form in the 5′‐end of the tufB mRNA. Formation of the ‘closed’ structure leads to Rho‐dependent transcriptional termination of the tufB mRNA. We propose a model in which translational speed is used as a sensor for EF‐Tu concentration and where the expression of tufB is post‐transcriptionally regulated. This model describes for the first time how expression of the most abundant Salmonella protein is autoregulated. The amount of EF‐Tu expressed from tufB can vary two‐fold but the mechanism of this regulation is unknown. Based on analysis of selected and constructed mutations, and using transcriptional and translational fusions, we propose a model where translational speed is used as a sensor for EF‐Tu concentration and where the expression of tufB is post‐transcriptionally regulated. This model describes for the first time how expression of the most abundant Salmonella protein is autoregulated.</description><subject>Bacterial Proteins</subject><subject>Biologi med inriktning mot mikrobiologi</subject><subject>Biology with specialization in Microbiology</subject><subject>EF-Tu</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Genes</subject><subject>Genes, Bacterial</subject><subject>Homeostasis</subject><subject>Microbiology</subject><subject>Mikrobiologi</subject><subject>Molecular Genetics</subject><subject>Molekylär genetik</subject><subject>Mutation</subject><subject>Operon</subject><subject>Peptide Elongation Factor Tu - genetics</subject><subject>Peptide Elongation Factor Tu - metabolism</subject><subject>Point Mutation</subject><subject>post-transcriptional regulation</subject><subject>Protein Biosynthesis</subject><subject>Rho</subject><subject>RNA, Bacterial - genetics</subject><subject>RNA, Bacterial - metabolism</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Salmonella</subject><subject>Salmonella - genetics</subject><subject>Salmonella - metabolism</subject><subject>Salmonella enterica</subject><subject>Transcription, Genetic</subject><subject>tufA</subject><subject>tufB</subject><issn>0950-382X</issn><issn>1365-2958</issn><issn>1365-2958</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqF0U1LwzAcBvAgis6Xg19ACl4U7Jb3Jsc5X8HhwRe8hbbJtNI2M2kYfnszO3cQxFwC4ceT5P8AcIjgEMU1appqiAjhdAMMEOEsxZKJTTCAksGUCPyyA3a9f4cQEcjJNtjBXBLKJB2A0Th01pnXUOddZdvEzpLuzSRdmJ0ndm5cPKra5CGvG9uaus73wdYsr705WO174Onq8nFyk97dX99OxndpSTGhabwnQ5qhTEiMBSqE0ViXpGSaEyZwCSHXuqQEsTw3pqAZKjTXiEoiBceFJHvgrM_1CzMPhZq7qsndp7J5pS6q57Gy7lWFoDBhGInIT3o-d_YjGN-ppvLl8sGtscErJHAmRJxN9j_N4vAyRiSP9PgXfbfBtfHfS0URwhLiqE57VTrrvTOz9WMRVMt-VOxHffcT7dEqMRSN0Wv5U0gEox4sqtp8_p2kptPbPvILshOWUg</recordid><startdate>201606</startdate><enddate>201606</enddate><creator>Brandis, Gerrit</creator><creator>Bergman, Jessica M.</creator><creator>Hughes, Diarmaid</creator><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DF2</scope></search><sort><creationdate>201606</creationdate><title>Autoregulation of the tufB operon in Salmonella</title><author>Brandis, Gerrit ; Bergman, Jessica M. ; Hughes, Diarmaid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4234-30671d517892281b8ed2dc3c5d63582c006ddc4315aaeeb471bd6d14939862b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Bacterial Proteins</topic><topic>Biologi med inriktning mot mikrobiologi</topic><topic>Biology with specialization in Microbiology</topic><topic>EF-Tu</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Genes</topic><topic>Genes, Bacterial</topic><topic>Homeostasis</topic><topic>Microbiology</topic><topic>Mikrobiologi</topic><topic>Molecular Genetics</topic><topic>Molekylär genetik</topic><topic>Mutation</topic><topic>Operon</topic><topic>Peptide Elongation Factor Tu - genetics</topic><topic>Peptide Elongation Factor Tu - metabolism</topic><topic>Point Mutation</topic><topic>post-transcriptional regulation</topic><topic>Protein Biosynthesis</topic><topic>Rho</topic><topic>RNA, Bacterial - genetics</topic><topic>RNA, Bacterial - metabolism</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Salmonella</topic><topic>Salmonella - genetics</topic><topic>Salmonella - metabolism</topic><topic>Salmonella enterica</topic><topic>Transcription, Genetic</topic><topic>tufA</topic><topic>tufB</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brandis, Gerrit</creatorcontrib><creatorcontrib>Bergman, Jessica M.</creatorcontrib><creatorcontrib>Hughes, Diarmaid</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Uppsala universitet</collection><jtitle>Molecular microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brandis, Gerrit</au><au>Bergman, Jessica M.</au><au>Hughes, Diarmaid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Autoregulation of the tufB operon in Salmonella</atitle><jtitle>Molecular microbiology</jtitle><addtitle>Mol Microbiol</addtitle><date>2016-06</date><risdate>2016</risdate><volume>100</volume><issue>6</issue><spage>1004</spage><epage>1016</epage><pages>1004-1016</pages><issn>0950-382X</issn><issn>1365-2958</issn><eissn>1365-2958</eissn><abstract>Summary In Salmonella enterica and related species, translation elongation factor EF‐Tu is encoded by two widely separated but near‐identical genes, tufA and tufB. Two thirds of EF‐Tu is expressed from tufA with the remaining one third coming from tufB. Inactivation of tufA is partly compensated by a doubling in the amount of EF‐TuB but the mechanism of this up‐regulation is unknown. By experimental evolution selecting for improved growth rate in a strain with an inactive tufA we selected six different noncoding or synonymous point mutations close to the tufB start codon. Based on these results we constructed a total of 161 different point mutations around the tufB start codon, as well as tufB 3′‐truncations, and measured tufB expression using tufB‐yfp transcriptional and translational fusions. The expression data support the presence of two competing stem‐loop structures that can form in the 5′‐end of the tufB mRNA. Formation of the ‘closed’ structure leads to Rho‐dependent transcriptional termination of the tufB mRNA. We propose a model in which translational speed is used as a sensor for EF‐Tu concentration and where the expression of tufB is post‐transcriptionally regulated. This model describes for the first time how expression of the most abundant Salmonella protein is autoregulated. The amount of EF‐Tu expressed from tufB can vary two‐fold but the mechanism of this regulation is unknown. Based on analysis of selected and constructed mutations, and using transcriptional and translational fusions, we propose a model where translational speed is used as a sensor for EF‐Tu concentration and where the expression of tufB is post‐transcriptionally regulated. This model describes for the first time how expression of the most abundant Salmonella protein is autoregulated.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>26934594</pmid><doi>10.1111/mmi.13364</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0950-382X
ispartof Molecular microbiology, 2016-06, Vol.100 (6), p.1004-1016
issn 0950-382X
1365-2958
1365-2958
language eng
recordid cdi_swepub_primary_oai_DiVA_org_uu_235218
source Wiley-Blackwell Read & Publish Collection
subjects Bacterial Proteins
Biologi med inriktning mot mikrobiologi
Biology with specialization in Microbiology
EF-Tu
Escherichia coli - genetics
Escherichia coli - metabolism
Genes
Genes, Bacterial
Homeostasis
Microbiology
Mikrobiologi
Molecular Genetics
Molekylär genetik
Mutation
Operon
Peptide Elongation Factor Tu - genetics
Peptide Elongation Factor Tu - metabolism
Point Mutation
post-transcriptional regulation
Protein Biosynthesis
Rho
RNA, Bacterial - genetics
RNA, Bacterial - metabolism
RNA, Messenger - genetics
RNA, Messenger - metabolism
Salmonella
Salmonella - genetics
Salmonella - metabolism
Salmonella enterica
Transcription, Genetic
tufA
tufB
title Autoregulation of the tufB operon in Salmonella
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T01%3A58%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Autoregulation%20of%20the%20tufB%20operon%20in%20Salmonella&rft.jtitle=Molecular%20microbiology&rft.au=Brandis,%20Gerrit&rft.date=2016-06&rft.volume=100&rft.issue=6&rft.spage=1004&rft.epage=1016&rft.pages=1004-1016&rft.issn=0950-382X&rft.eissn=1365-2958&rft_id=info:doi/10.1111/mmi.13364&rft_dat=%3Cproquest_swepu%3E1827881367%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4234-30671d517892281b8ed2dc3c5d63582c006ddc4315aaeeb471bd6d14939862b93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1794112902&rft_id=info:pmid/26934594&rfr_iscdi=true