Loading…

Bioceramic microneedles with flexible and self-swelling substrate

[Display omitted] To reduce the effort required to penetrate the skin and optimize drug release profiles, bioceramic microneedle arrays with higher-aspect-ratio needles and a flexible and self-swelling substrate have been developed. Swelling of the substrate can assist in separating it from the need...

Full description

Saved in:
Bibliographic Details
Published in:European journal of pharmaceutics and biopharmaceutics 2015-08, Vol.94, p.404-410
Main Authors: Cai, Bing, Xia, Wei, Bredenberg, Susanne, Li, Hao, Engqvist, Håkan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:[Display omitted] To reduce the effort required to penetrate the skin and optimize drug release profiles, bioceramic microneedle arrays with higher-aspect-ratio needles and a flexible and self-swelling substrate have been developed. Swelling of the substrate can assist in separating it from the needles and leave them in the skin as a drug depot. The preparation procedures for this bioceramic microneedle are described in the paper. Clonidine hydrochloride, the model drug, was released in a controlled manner by the microneedle device in vitro. Results showed that the microneedle array with a flexible and self-swelling substrate released the drug content faster than the array with a rigid substrate. Disintegration of the needle material and diffusion of the drug molecules are believed as the main control mechanisms of the drug release from these microneedle arrays. Ex vivo skin penetration showed that they can effectively penetrate the stratum corneum without an extra device. This work represents a progression in the improvement of bioceramic microneedles for transdermal drug delivery.
ISSN:0939-6411
1873-3441
1873-3441
DOI:10.1016/j.ejpb.2015.06.016