Loading…

Probabilistic 3-D time-lapse inversion of magnetotelluric data: application to an enhanced geothermal system

Surface-based monitoring of mass transfer caused by injections and extractions in deep boreholes is crucial to maximize oil, gas and geothermal production. Inductive electromagnetic methods, such as magnetotellurics, are appealing for these applications due to their large penetration depths and sens...

Full description

Saved in:
Bibliographic Details
Published in:Geophysical journal international 2015-12, Vol.203 (3), p.1946-1960
Main Authors: Rosas-Carbajal, M., Linde, N., Peacock, J., Zyserman, F.I., Kalscheuer, T., Thiel, S.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a357t-3e729d156808f6f10d251eede7bed63cfd69041d93ce91886c463380d1c7946e3
cites cdi_FETCH-LOGICAL-a357t-3e729d156808f6f10d251eede7bed63cfd69041d93ce91886c463380d1c7946e3
container_end_page 1960
container_issue 3
container_start_page 1946
container_title Geophysical journal international
container_volume 203
creator Rosas-Carbajal, M.
Linde, N.
Peacock, J.
Zyserman, F.I.
Kalscheuer, T.
Thiel, S.
description Surface-based monitoring of mass transfer caused by injections and extractions in deep boreholes is crucial to maximize oil, gas and geothermal production. Inductive electromagnetic methods, such as magnetotellurics, are appealing for these applications due to their large penetration depths and sensitivity to changes in fluid conductivity and fracture connectivity. In this work, we propose a 3-D Markov chain Monte Carlo inversion of time-lapse magnetotelluric data to image mass transfer following a saline fluid injection. The inversion estimates the posterior probability density function of the resulting plume, and thereby quantifies model uncertainty. To decrease computation times, we base the parametrization on a reduced Legendre moment decomposition of the plume. A synthetic test shows that our methodology is effective when the electrical resistivity structure prior to the injection is well known. The centre of mass and spread of the plume are well retrieved. We then apply our inversion strategy to an injection experiment in an enhanced geothermal system at Paralana, South Australia, and compare it to a 3-D deterministic time-lapse inversion. The latter retrieves resistivity changes that are more shallow than the actual injection interval, whereas the probabilistic inversion retrieves plumes that are located at the correct depths and oriented in a preferential north–south direction. To explain the time-lapse data, the inversion requires unrealistically large resistivity changes with respect to the base model. We suggest that this is partly explained by unaccounted subsurface heterogeneities in the base model from which time-lapse changes are inferred.
doi_str_mv 10.1093/gji/ggv406
format article
fullrecord <record><control><sourceid>oup_TOX</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_uu_265540</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/gji/ggv406</oup_id><sourcerecordid>10.1093/gji/ggv406</sourcerecordid><originalsourceid>FETCH-LOGICAL-a357t-3e729d156808f6f10d251eede7bed63cfd69041d93ce91886c463380d1c7946e3</originalsourceid><addsrcrecordid>eNp90L1OwzAUhmELgUQpLFyBFxZEqB0nTsJWtfxJlWAA1M1y4pPUlRNHtlPUuydVESPTWZ7zDS9C15TcU1KwWbPVs6bZJYSfoAllPI3ihK9P0YQUKY_ShKzP0YX3W0JoQpN8gsy7s6UstdE-6AqzaImDbiEysveAdbcD57XtsK1xK5sOgg1gzOBGq2SQD1j2vdGVDAcULJYdhm4juwoUbsCGDbhWGuz3PkB7ic5qaTxc_d4p-nx6_Fi8RKu359fFfBVJlmYhYpDFhaIpz0le85oSFacUQEFWguKsqhUvSEJVwSooaJ7zKuGM5UTRKisSDmyK7o67_hv6oRS90610e2GlFkv9NRfWNWIYRMzTMcnIb4-8ctZ7B_XfAyXikFWMWcUx64hvjtgO_X_uB3Taerg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Probabilistic 3-D time-lapse inversion of magnetotelluric data: application to an enhanced geothermal system</title><source>Oxford University Press Open Access</source><creator>Rosas-Carbajal, M. ; Linde, N. ; Peacock, J. ; Zyserman, F.I. ; Kalscheuer, T. ; Thiel, S.</creator><creatorcontrib>Rosas-Carbajal, M. ; Linde, N. ; Peacock, J. ; Zyserman, F.I. ; Kalscheuer, T. ; Thiel, S.</creatorcontrib><description>Surface-based monitoring of mass transfer caused by injections and extractions in deep boreholes is crucial to maximize oil, gas and geothermal production. Inductive electromagnetic methods, such as magnetotellurics, are appealing for these applications due to their large penetration depths and sensitivity to changes in fluid conductivity and fracture connectivity. In this work, we propose a 3-D Markov chain Monte Carlo inversion of time-lapse magnetotelluric data to image mass transfer following a saline fluid injection. The inversion estimates the posterior probability density function of the resulting plume, and thereby quantifies model uncertainty. To decrease computation times, we base the parametrization on a reduced Legendre moment decomposition of the plume. A synthetic test shows that our methodology is effective when the electrical resistivity structure prior to the injection is well known. The centre of mass and spread of the plume are well retrieved. We then apply our inversion strategy to an injection experiment in an enhanced geothermal system at Paralana, South Australia, and compare it to a 3-D deterministic time-lapse inversion. The latter retrieves resistivity changes that are more shallow than the actual injection interval, whereas the probabilistic inversion retrieves plumes that are located at the correct depths and oriented in a preferential north–south direction. To explain the time-lapse data, the inversion requires unrealistically large resistivity changes with respect to the base model. We suggest that this is partly explained by unaccounted subsurface heterogeneities in the base model from which time-lapse changes are inferred.</description><identifier>ISSN: 0956-540X</identifier><identifier>ISSN: 1365-246X</identifier><identifier>EISSN: 1365-246X</identifier><identifier>DOI: 10.1093/gji/ggv406</identifier><language>eng</language><publisher>Oxford University Press</publisher><ispartof>Geophysical journal international, 2015-12, Vol.203 (3), p.1946-1960</ispartof><rights>The Authors 2015. Published by Oxford University Press on behalf of The Royal Astronomical Society. 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a357t-3e729d156808f6f10d251eede7bed63cfd69041d93ce91886c463380d1c7946e3</citedby><cites>FETCH-LOGICAL-a357t-3e729d156808f6f10d251eede7bed63cfd69041d93ce91886c463380d1c7946e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,1599,27905,27906</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/gji/ggv406$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-265540$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Rosas-Carbajal, M.</creatorcontrib><creatorcontrib>Linde, N.</creatorcontrib><creatorcontrib>Peacock, J.</creatorcontrib><creatorcontrib>Zyserman, F.I.</creatorcontrib><creatorcontrib>Kalscheuer, T.</creatorcontrib><creatorcontrib>Thiel, S.</creatorcontrib><title>Probabilistic 3-D time-lapse inversion of magnetotelluric data: application to an enhanced geothermal system</title><title>Geophysical journal international</title><description>Surface-based monitoring of mass transfer caused by injections and extractions in deep boreholes is crucial to maximize oil, gas and geothermal production. Inductive electromagnetic methods, such as magnetotellurics, are appealing for these applications due to their large penetration depths and sensitivity to changes in fluid conductivity and fracture connectivity. In this work, we propose a 3-D Markov chain Monte Carlo inversion of time-lapse magnetotelluric data to image mass transfer following a saline fluid injection. The inversion estimates the posterior probability density function of the resulting plume, and thereby quantifies model uncertainty. To decrease computation times, we base the parametrization on a reduced Legendre moment decomposition of the plume. A synthetic test shows that our methodology is effective when the electrical resistivity structure prior to the injection is well known. The centre of mass and spread of the plume are well retrieved. We then apply our inversion strategy to an injection experiment in an enhanced geothermal system at Paralana, South Australia, and compare it to a 3-D deterministic time-lapse inversion. The latter retrieves resistivity changes that are more shallow than the actual injection interval, whereas the probabilistic inversion retrieves plumes that are located at the correct depths and oriented in a preferential north–south direction. To explain the time-lapse data, the inversion requires unrealistically large resistivity changes with respect to the base model. We suggest that this is partly explained by unaccounted subsurface heterogeneities in the base model from which time-lapse changes are inferred.</description><issn>0956-540X</issn><issn>1365-246X</issn><issn>1365-246X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp90L1OwzAUhmELgUQpLFyBFxZEqB0nTsJWtfxJlWAA1M1y4pPUlRNHtlPUuydVESPTWZ7zDS9C15TcU1KwWbPVs6bZJYSfoAllPI3ihK9P0YQUKY_ShKzP0YX3W0JoQpN8gsy7s6UstdE-6AqzaImDbiEysveAdbcD57XtsK1xK5sOgg1gzOBGq2SQD1j2vdGVDAcULJYdhm4juwoUbsCGDbhWGuz3PkB7ic5qaTxc_d4p-nx6_Fi8RKu359fFfBVJlmYhYpDFhaIpz0le85oSFacUQEFWguKsqhUvSEJVwSooaJ7zKuGM5UTRKisSDmyK7o67_hv6oRS90610e2GlFkv9NRfWNWIYRMzTMcnIb4-8ctZ7B_XfAyXikFWMWcUx64hvjtgO_X_uB3Taerg</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Rosas-Carbajal, M.</creator><creator>Linde, N.</creator><creator>Peacock, J.</creator><creator>Zyserman, F.I.</creator><creator>Kalscheuer, T.</creator><creator>Thiel, S.</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ACNBI</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DF2</scope><scope>ZZAVC</scope></search><sort><creationdate>20151201</creationdate><title>Probabilistic 3-D time-lapse inversion of magnetotelluric data: application to an enhanced geothermal system</title><author>Rosas-Carbajal, M. ; Linde, N. ; Peacock, J. ; Zyserman, F.I. ; Kalscheuer, T. ; Thiel, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a357t-3e729d156808f6f10d251eede7bed63cfd69041d93ce91886c463380d1c7946e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rosas-Carbajal, M.</creatorcontrib><creatorcontrib>Linde, N.</creatorcontrib><creatorcontrib>Peacock, J.</creatorcontrib><creatorcontrib>Zyserman, F.I.</creatorcontrib><creatorcontrib>Kalscheuer, T.</creatorcontrib><creatorcontrib>Thiel, S.</creatorcontrib><collection>CrossRef</collection><collection>SWEPUB Uppsala universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Uppsala universitet</collection><collection>SwePub Articles full text</collection><jtitle>Geophysical journal international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rosas-Carbajal, M.</au><au>Linde, N.</au><au>Peacock, J.</au><au>Zyserman, F.I.</au><au>Kalscheuer, T.</au><au>Thiel, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probabilistic 3-D time-lapse inversion of magnetotelluric data: application to an enhanced geothermal system</atitle><jtitle>Geophysical journal international</jtitle><date>2015-12-01</date><risdate>2015</risdate><volume>203</volume><issue>3</issue><spage>1946</spage><epage>1960</epage><pages>1946-1960</pages><issn>0956-540X</issn><issn>1365-246X</issn><eissn>1365-246X</eissn><abstract>Surface-based monitoring of mass transfer caused by injections and extractions in deep boreholes is crucial to maximize oil, gas and geothermal production. Inductive electromagnetic methods, such as magnetotellurics, are appealing for these applications due to their large penetration depths and sensitivity to changes in fluid conductivity and fracture connectivity. In this work, we propose a 3-D Markov chain Monte Carlo inversion of time-lapse magnetotelluric data to image mass transfer following a saline fluid injection. The inversion estimates the posterior probability density function of the resulting plume, and thereby quantifies model uncertainty. To decrease computation times, we base the parametrization on a reduced Legendre moment decomposition of the plume. A synthetic test shows that our methodology is effective when the electrical resistivity structure prior to the injection is well known. The centre of mass and spread of the plume are well retrieved. We then apply our inversion strategy to an injection experiment in an enhanced geothermal system at Paralana, South Australia, and compare it to a 3-D deterministic time-lapse inversion. The latter retrieves resistivity changes that are more shallow than the actual injection interval, whereas the probabilistic inversion retrieves plumes that are located at the correct depths and oriented in a preferential north–south direction. To explain the time-lapse data, the inversion requires unrealistically large resistivity changes with respect to the base model. We suggest that this is partly explained by unaccounted subsurface heterogeneities in the base model from which time-lapse changes are inferred.</abstract><pub>Oxford University Press</pub><doi>10.1093/gji/ggv406</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0956-540X
ispartof Geophysical journal international, 2015-12, Vol.203 (3), p.1946-1960
issn 0956-540X
1365-246X
1365-246X
language eng
recordid cdi_swepub_primary_oai_DiVA_org_uu_265540
source Oxford University Press Open Access
title Probabilistic 3-D time-lapse inversion of magnetotelluric data: application to an enhanced geothermal system
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T15%3A00%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-oup_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probabilistic%203-D%20time-lapse%20inversion%20of%20magnetotelluric%20data:%20application%20to%20an%20enhanced%20geothermal%20system&rft.jtitle=Geophysical%20journal%20international&rft.au=Rosas-Carbajal,%20M.&rft.date=2015-12-01&rft.volume=203&rft.issue=3&rft.spage=1946&rft.epage=1960&rft.pages=1946-1960&rft.issn=0956-540X&rft.eissn=1365-246X&rft_id=info:doi/10.1093/gji/ggv406&rft_dat=%3Coup_TOX%3E10.1093/gji/ggv406%3C/oup_TOX%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a357t-3e729d156808f6f10d251eede7bed63cfd69041d93ce91886c463380d1c7946e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_oup_id=10.1093/gji/ggv406&rfr_iscdi=true