Loading…

Correlation and efficiency of propensity score-based estimators for average causal effects

Propensity score-based estimators are commonly used to estimate causal effects in evaluation research. To reduce bias in observational studies, researchers might be tempted to include many, perhaps correlated, covariates when estimating the propensity score model. Taking into account that the propen...

Full description

Saved in:
Bibliographic Details
Published in:Communications in statistics. Simulation and computation 2017-01, Vol.46 (5), p.3458-3478
Main Authors: Pingel, Ronnie, Waernbaum, Ingeborg
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c460t-e7cf3bec53cb9459fe824692fb0a4e189e85fd234caac00e411aec09dc409e343
cites cdi_FETCH-LOGICAL-c460t-e7cf3bec53cb9459fe824692fb0a4e189e85fd234caac00e411aec09dc409e343
container_end_page 3478
container_issue 5
container_start_page 3458
container_title Communications in statistics. Simulation and computation
container_volume 46
creator Pingel, Ronnie
Waernbaum, Ingeborg
description Propensity score-based estimators are commonly used to estimate causal effects in evaluation research. To reduce bias in observational studies, researchers might be tempted to include many, perhaps correlated, covariates when estimating the propensity score model. Taking into account that the propensity score is estimated, this study investigates how the efficiency of matching, inverse probability weighting, and doubly robust estimators change under the case of correlated covariates. Propositions regarding the large sample variances under certain assumptions on the data-generating process are given. The propositions are supplemented by several numerical large sample and finite sample results from a wide range of models. The results show that the covariate correlations may increase or decrease the variances of the estimators. There are several factors that influence how correlation affects the variance of the estimators, including the choice of estimator, the strength of the confounding toward outcome and treatment, and whether a constant or non-constant causal effect is present.
doi_str_mv 10.1080/03610918.2015.1094091
format article
fullrecord <record><control><sourceid>proquest_swepu</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_uu_271585</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1903488295</sourcerecordid><originalsourceid>FETCH-LOGICAL-c460t-e7cf3bec53cb9459fe824692fb0a4e189e85fd234caac00e411aec09dc409e343</originalsourceid><addsrcrecordid>eNqNkU1LxDAQhoMouH78BKHg1eqkSdfkpqyfIHhRD17CNDuRSLdZk9Zl_70pqx7F0zDDMy_zzsvYEYdTDgrOQEw5aK5OK-B1HmmZuy024bWoSskl32aTkSlHaJftpfQOAEJJNWGvsxAjtdj70BXYzQtyzltPnV0XwRXLGJbUJd-vi2RDpLLBRBlKvV9gH2IqXIgFflLENyosDgnbUYJsnw7YjsM20eF33WfPN9dPs7vy4fH2fnb5UFo5hb6kc-tEQ7YWttGy1o5UJae6cg2gJK40qdrNKyEtogUgyTmSBT232SYJKfbZyUY3rWg5NGYZ821xbQJ6c-VfLk2Ib2YYTHXOa1VnvPwHvhgM50LDyB9v-PyLjyE7N-9hiF12ZLgGIZWq9EjVG8rGkFIk96vLwYwpmZ-UzJiS-U4p711s9nyXP7nAVYjt3PS4bkN0ETvrkxF_S3wBwyOaoA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1903488295</pqid></control><display><type>article</type><title>Correlation and efficiency of propensity score-based estimators for average causal effects</title><source>Taylor and Francis Science and Technology Collection</source><creator>Pingel, Ronnie ; Waernbaum, Ingeborg</creator><creatorcontrib>Pingel, Ronnie ; Waernbaum, Ingeborg</creatorcontrib><description>Propensity score-based estimators are commonly used to estimate causal effects in evaluation research. To reduce bias in observational studies, researchers might be tempted to include many, perhaps correlated, covariates when estimating the propensity score model. Taking into account that the propensity score is estimated, this study investigates how the efficiency of matching, inverse probability weighting, and doubly robust estimators change under the case of correlated covariates. Propositions regarding the large sample variances under certain assumptions on the data-generating process are given. The propositions are supplemented by several numerical large sample and finite sample results from a wide range of models. The results show that the covariate correlations may increase or decrease the variances of the estimators. There are several factors that influence how correlation affects the variance of the estimators, including the choice of estimator, the strength of the confounding toward outcome and treatment, and whether a constant or non-constant causal effect is present.</description><identifier>ISSN: 0361-0918</identifier><identifier>ISSN: 1532-4141</identifier><identifier>EISSN: 1532-4141</identifier><identifier>DOI: 10.1080/03610918.2015.1094091</identifier><language>eng</language><publisher>Philadelphia: Taylor &amp; Francis</publisher><subject>62F10 ; 62G05 ; 62G35 ; central nervous system ; Doubly robust ; Estimators ; Inverse probability ; Matching ; Mathematical models ; Observational studies ; Observational study ; Robustness (mathematics) ; Statistics ; Statistik ; Studies</subject><ispartof>Communications in statistics. Simulation and computation, 2017-01, Vol.46 (5), p.3458-3478</ispartof><rights>2017 Taylor &amp; Francis Group, LLC 2017</rights><rights>2017 Taylor &amp; Francis Group, LLC</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c460t-e7cf3bec53cb9459fe824692fb0a4e189e85fd234caac00e411aec09dc409e343</citedby><cites>FETCH-LOGICAL-c460t-e7cf3bec53cb9459fe824692fb0a4e189e85fd234caac00e411aec09dc409e343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-113905$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-271585$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Pingel, Ronnie</creatorcontrib><creatorcontrib>Waernbaum, Ingeborg</creatorcontrib><title>Correlation and efficiency of propensity score-based estimators for average causal effects</title><title>Communications in statistics. Simulation and computation</title><description>Propensity score-based estimators are commonly used to estimate causal effects in evaluation research. To reduce bias in observational studies, researchers might be tempted to include many, perhaps correlated, covariates when estimating the propensity score model. Taking into account that the propensity score is estimated, this study investigates how the efficiency of matching, inverse probability weighting, and doubly robust estimators change under the case of correlated covariates. Propositions regarding the large sample variances under certain assumptions on the data-generating process are given. The propositions are supplemented by several numerical large sample and finite sample results from a wide range of models. The results show that the covariate correlations may increase or decrease the variances of the estimators. There are several factors that influence how correlation affects the variance of the estimators, including the choice of estimator, the strength of the confounding toward outcome and treatment, and whether a constant or non-constant causal effect is present.</description><subject>62F10</subject><subject>62G05</subject><subject>62G35</subject><subject>central nervous system</subject><subject>Doubly robust</subject><subject>Estimators</subject><subject>Inverse probability</subject><subject>Matching</subject><subject>Mathematical models</subject><subject>Observational studies</subject><subject>Observational study</subject><subject>Robustness (mathematics)</subject><subject>Statistics</subject><subject>Statistik</subject><subject>Studies</subject><issn>0361-0918</issn><issn>1532-4141</issn><issn>1532-4141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNkU1LxDAQhoMouH78BKHg1eqkSdfkpqyfIHhRD17CNDuRSLdZk9Zl_70pqx7F0zDDMy_zzsvYEYdTDgrOQEw5aK5OK-B1HmmZuy024bWoSskl32aTkSlHaJftpfQOAEJJNWGvsxAjtdj70BXYzQtyzltPnV0XwRXLGJbUJd-vi2RDpLLBRBlKvV9gH2IqXIgFflLENyosDgnbUYJsnw7YjsM20eF33WfPN9dPs7vy4fH2fnb5UFo5hb6kc-tEQ7YWttGy1o5UJae6cg2gJK40qdrNKyEtogUgyTmSBT232SYJKfbZyUY3rWg5NGYZ821xbQJ6c-VfLk2Ib2YYTHXOa1VnvPwHvhgM50LDyB9v-PyLjyE7N-9hiF12ZLgGIZWq9EjVG8rGkFIk96vLwYwpmZ-UzJiS-U4p711s9nyXP7nAVYjt3PS4bkN0ETvrkxF_S3wBwyOaoA</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Pingel, Ronnie</creator><creator>Waernbaum, Ingeborg</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D93</scope><scope>DF2</scope></search><sort><creationdate>20170101</creationdate><title>Correlation and efficiency of propensity score-based estimators for average causal effects</title><author>Pingel, Ronnie ; Waernbaum, Ingeborg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c460t-e7cf3bec53cb9459fe824692fb0a4e189e85fd234caac00e411aec09dc409e343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>62F10</topic><topic>62G05</topic><topic>62G35</topic><topic>central nervous system</topic><topic>Doubly robust</topic><topic>Estimators</topic><topic>Inverse probability</topic><topic>Matching</topic><topic>Mathematical models</topic><topic>Observational studies</topic><topic>Observational study</topic><topic>Robustness (mathematics)</topic><topic>Statistics</topic><topic>Statistik</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pingel, Ronnie</creatorcontrib><creatorcontrib>Waernbaum, Ingeborg</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Umeå universitet</collection><collection>SWEPUB Uppsala universitet</collection><jtitle>Communications in statistics. Simulation and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pingel, Ronnie</au><au>Waernbaum, Ingeborg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Correlation and efficiency of propensity score-based estimators for average causal effects</atitle><jtitle>Communications in statistics. Simulation and computation</jtitle><date>2017-01-01</date><risdate>2017</risdate><volume>46</volume><issue>5</issue><spage>3458</spage><epage>3478</epage><pages>3458-3478</pages><issn>0361-0918</issn><issn>1532-4141</issn><eissn>1532-4141</eissn><abstract>Propensity score-based estimators are commonly used to estimate causal effects in evaluation research. To reduce bias in observational studies, researchers might be tempted to include many, perhaps correlated, covariates when estimating the propensity score model. Taking into account that the propensity score is estimated, this study investigates how the efficiency of matching, inverse probability weighting, and doubly robust estimators change under the case of correlated covariates. Propositions regarding the large sample variances under certain assumptions on the data-generating process are given. The propositions are supplemented by several numerical large sample and finite sample results from a wide range of models. The results show that the covariate correlations may increase or decrease the variances of the estimators. There are several factors that influence how correlation affects the variance of the estimators, including the choice of estimator, the strength of the confounding toward outcome and treatment, and whether a constant or non-constant causal effect is present.</abstract><cop>Philadelphia</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/03610918.2015.1094091</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0361-0918
ispartof Communications in statistics. Simulation and computation, 2017-01, Vol.46 (5), p.3458-3478
issn 0361-0918
1532-4141
1532-4141
language eng
recordid cdi_swepub_primary_oai_DiVA_org_uu_271585
source Taylor and Francis Science and Technology Collection
subjects 62F10
62G05
62G35
central nervous system
Doubly robust
Estimators
Inverse probability
Matching
Mathematical models
Observational studies
Observational study
Robustness (mathematics)
Statistics
Statistik
Studies
title Correlation and efficiency of propensity score-based estimators for average causal effects
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T16%3A26%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_swepu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Correlation%20and%20efficiency%20of%20propensity%20score-based%20estimators%20for%20average%20causal%20effects&rft.jtitle=Communications%20in%20statistics.%20Simulation%20and%20computation&rft.au=Pingel,%20Ronnie&rft.date=2017-01-01&rft.volume=46&rft.issue=5&rft.spage=3458&rft.epage=3478&rft.pages=3458-3478&rft.issn=0361-0918&rft.eissn=1532-4141&rft_id=info:doi/10.1080/03610918.2015.1094091&rft_dat=%3Cproquest_swepu%3E1903488295%3C/proquest_swepu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c460t-e7cf3bec53cb9459fe824692fb0a4e189e85fd234caac00e411aec09dc409e343%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1903488295&rft_id=info:pmid/&rfr_iscdi=true