Loading…

Shallow ice approximation, second order shallow ice approximation, and full Stokes models: A discussion of their roles in palaeo-ice sheet modelling and development

Full Stokes ice sheet models provide the most accurate description of ice sheet flow, and can therefore be used to reduce existing uncertainties in predicting the contribution of ice sheets to future sea level rise on centennial time-scales. The level of accuracy at which millennial time-scale palae...

Full description

Saved in:
Bibliographic Details
Published in:Quaternary science reviews 2016-03, Vol.135, p.103-114
Main Authors: Kirchner, N., Ahlkrona, J., Gowan, E.J., Lötstedt, P., Lea, J.M., Noormets, R., von Sydow, L., Dowdeswell, J.A., Benham, T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Full Stokes ice sheet models provide the most accurate description of ice sheet flow, and can therefore be used to reduce existing uncertainties in predicting the contribution of ice sheets to future sea level rise on centennial time-scales. The level of accuracy at which millennial time-scale palaeo-ice sheet simulations resolve ice sheet flow lags the standards set by Full Stokes models, especially, when Shallow Ice Approximation (SIA) models are used. Most models used in paleo-ice sheet modeling were developed at a time when computer power was very limited, and rely on several assumptions. At the time there was no means of verifying the assumptions by other than mathematical arguments. However, with the computer power and refined Full Stokes models available today, it is possible to test these assumptions numerically. In this paper, we review (Ahlkrona et al., 2013a) where such tests were performed and inaccuracies in commonly used arguments were found. We also summarize (Ahlkrona et al., 2013b) where the implications of the inaccurate assumptions are analyzed for two paleo-models – the SIA and the SOSIA. We review these works without resorting to mathematical detail, in order to make them accessible to a wider audience with a general interest in palaeo-ice sheet modelling. Specifically, we discuss two implications of relevance for palaeo-ice sheet modelling. First, classical SIA models are less accurate than assumed in their original derivation. Secondly, and contrary to previous recommendations, the SOSIA model is ruled out as a practicable tool for palaeo-ice sheet simulations. We conclude with an outlook concerning the new Ice Sheet Coupled Approximation Level (ISCAL) method presented in Ahlkrona et al. (2016), that has the potential to match the accuracy standards of full Stokes model on palaeo-timescales of tens of thousands of years, and to become an alternative to hybrid models currently used in palaeo-ice sheet modelling. The method is applied to an ice sheet covering Svalbard. •Discussion of selected recent progress made in palaeo-ice sheet model development.•Ice Sheet with Coupled Approximation Levels (ISCAL) method: coupling shallow ice approximation and full Stokes.•ISCAL a potential alternative to hybrid ice sheet models for palaeo-ice sheet simulations.
ISSN:0277-3791
1873-457X
1873-457X
DOI:10.1016/j.quascirev.2016.01.013