Loading…

UV and optical light transmission properties in deep ice at the South Pole

Both absorption and scattering of light at wavelengths 410 to 610 nanometers were measured in the South Pole ice at depths 0.8 to 1 kilometer with the laser calibration system of the Antarctic Muon And Neutrino Detector Array (AMANDA). At the shortest wavelengths the absorption lengths exceeded 200...

Full description

Saved in:
Bibliographic Details
Published in:Geophysical research letters 1997-06, Vol.24 (11), p.1355-1358
Main Authors: Askebjer, P., Barwick, S. W., Bergström, L., Bouchta, A., Carius, S., Dalberg, E., Erlandsson, B., Goobar, A., Gray, L., Hallgren, A., Halzen, F., Heukenkamp, H., Hulth, P. O., Hundertmark, S., Jacobsen, J., Kandhadai, V., Karle, A., Liubarsky, I., Lowder, D., Miller, T., Mock, P., Morse, R., Porrata, R., Price, P. B., Richards, A., Rubinstein, H., Schneider, E., Spiering, Ch, Streicher, O., Sun, Q., Thon, Th, Tilav, S., Wischnewski, R., Walck, C., Yodh, G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Both absorption and scattering of light at wavelengths 410 to 610 nanometers were measured in the South Pole ice at depths 0.8 to 1 kilometer with the laser calibration system of the Antarctic Muon And Neutrino Detector Array (AMANDA). At the shortest wavelengths the absorption lengths exceeded 200 meters—an order of magnitude longer than has been reported for laboratory ice. The absorption shows a strong wavelength dependence while the scattering length is found to be independent of the wavelength, consistent with the hypothesis of a residual density of air bubbles in the ice. The observed linear decrease of the inverse scattering length with depth is compatible with an earlier measurement by the AMANDA collaboration (at ∼515 nanometers).
ISSN:0094-8276
1944-8007
1944-8007
DOI:10.1029/97GL01246