Loading…

Thermal Energy Dissipation by SiO2-Coated Plasmonic-Superpararnagnetic Nanoparticles in Alternating Magnetic Fields

Multifunctional nanoparticles show great potential in the biomedical field and may help the diagnosis and therapy of diseases. Superparamagnetic nanoparticles are especially attractive because of their ability to dissipate thermal energy in an alternating magnetic field. Furthermore, plasmonic nanop...

Full description

Saved in:
Bibliographic Details
Published in:Chemistry of materials 2013-11, Vol.25 (22), p.4603
Main Authors: Sotiriou, Georgios A., Visbal-Onufrak, Michelle A., Teleki, Alexandra, Juan, Eduardo J., Hirt, Ann M., Pratsinis, Sotiris E., Rinaldi, Carlos
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 22
container_start_page 4603
container_title Chemistry of materials
container_volume 25
creator Sotiriou, Georgios A.
Visbal-Onufrak, Michelle A.
Teleki, Alexandra
Juan, Eduardo J.
Hirt, Ann M.
Pratsinis, Sotiris E.
Rinaldi, Carlos
description Multifunctional nanoparticles show great potential in the biomedical field and may help the diagnosis and therapy of diseases. Superparamagnetic nanoparticles are especially attractive because of their ability to dissipate thermal energy in an alternating magnetic field. Furthermore, plasmonic nanoparticles can be effectively used in non- or minimally invasive therapy of tumors exploiting their plasmonic photothermal effect. Here, hybrid plasmonicmagnetic Ag/Fe2O3 nanoparticles are made by flame aerosol technology. These nanoparticles can be in situ encapsulated with an amorphous nanothin SiO2 film to facilitate their dispersion and block any toxicity from Ag/Fe2O3. Detailed physicochemical characterization, including electron microscopy, electron dispersive X-ray spectroscopy, and X-ray diffraction, is performed. Furthermore, their magnetic properties are characterized in detail by monitoring their hysteresis, first-order-reversal-curves, and isothermal remanent magnetization. Finally, the effect of SiO2 and Agcontent on the specific absorption rate (SAR) of the hybrid Ag/Fe2O3 nanoparticles is investigated. The obtained understanding will help the rational design and engineering of multifunctional hybrid nanoprobes targeting specific biomedical applications.
doi_str_mv 10.1021/cm402896x
format article
fullrecord <record><control><sourceid>swepub</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_uu_317816</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_DiVA_org_uu_317816</sourcerecordid><originalsourceid>FETCH-LOGICAL-s122t-2960556e76f575e9f30404bb9181310632a0de572746acfe924275e922d8e1713</originalsourceid><addsrcrecordid>eNo1jM1OhDAUhbvQxHF04Rv0AUTbAi0syfw4JqNjMqNbcoEL1kAhbYny9mLU1Tk535dDyA1nd5wJfl92ERNJKr_OyIIlqQoiFcsLcuncB2N8VpIFcad3tB20dGPQNhNda-f0AF73hhYTPeqDCFY9eKzoSwuu640ug-M4oB3AgjXQGPS6pM9g-nmZa4uOakOz1uOMvTYNffq3thrbyl2R8xpah9d_uSSv281ptQv2h4fHVbYPHBfCByKVLI4lKlnHKsa0DlnEoqJIecJDzmQogFUYK6EiCWWNqYjEjydElSBXPFyS299f94nDWOSD1R3YKe9B52v9luW9bfJxzEOuEi7Dbxi7XjM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thermal Energy Dissipation by SiO2-Coated Plasmonic-Superpararnagnetic Nanoparticles in Alternating Magnetic Fields</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Sotiriou, Georgios A. ; Visbal-Onufrak, Michelle A. ; Teleki, Alexandra ; Juan, Eduardo J. ; Hirt, Ann M. ; Pratsinis, Sotiris E. ; Rinaldi, Carlos</creator><creatorcontrib>Sotiriou, Georgios A. ; Visbal-Onufrak, Michelle A. ; Teleki, Alexandra ; Juan, Eduardo J. ; Hirt, Ann M. ; Pratsinis, Sotiris E. ; Rinaldi, Carlos</creatorcontrib><description>Multifunctional nanoparticles show great potential in the biomedical field and may help the diagnosis and therapy of diseases. Superparamagnetic nanoparticles are especially attractive because of their ability to dissipate thermal energy in an alternating magnetic field. Furthermore, plasmonic nanoparticles can be effectively used in non- or minimally invasive therapy of tumors exploiting their plasmonic photothermal effect. Here, hybrid plasmonicmagnetic Ag/Fe2O3 nanoparticles are made by flame aerosol technology. These nanoparticles can be in situ encapsulated with an amorphous nanothin SiO2 film to facilitate their dispersion and block any toxicity from Ag/Fe2O3. Detailed physicochemical characterization, including electron microscopy, electron dispersive X-ray spectroscopy, and X-ray diffraction, is performed. Furthermore, their magnetic properties are characterized in detail by monitoring their hysteresis, first-order-reversal-curves, and isothermal remanent magnetization. Finally, the effect of SiO2 and Agcontent on the specific absorption rate (SAR) of the hybrid Ag/Fe2O3 nanoparticles is investigated. The obtained understanding will help the rational design and engineering of multifunctional hybrid nanoprobes targeting specific biomedical applications.</description><identifier>ISSN: 0897-4756</identifier><identifier>ISSN: 1520-5002</identifier><identifier>DOI: 10.1021/cm402896x</identifier><language>eng</language><subject>core-shell nanoparticles ; magnetic fluid hyperthermia ; specific absorption rate ; theranostics</subject><ispartof>Chemistry of materials, 2013-11, Vol.25 (22), p.4603</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-317816$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Sotiriou, Georgios A.</creatorcontrib><creatorcontrib>Visbal-Onufrak, Michelle A.</creatorcontrib><creatorcontrib>Teleki, Alexandra</creatorcontrib><creatorcontrib>Juan, Eduardo J.</creatorcontrib><creatorcontrib>Hirt, Ann M.</creatorcontrib><creatorcontrib>Pratsinis, Sotiris E.</creatorcontrib><creatorcontrib>Rinaldi, Carlos</creatorcontrib><title>Thermal Energy Dissipation by SiO2-Coated Plasmonic-Superpararnagnetic Nanoparticles in Alternating Magnetic Fields</title><title>Chemistry of materials</title><description>Multifunctional nanoparticles show great potential in the biomedical field and may help the diagnosis and therapy of diseases. Superparamagnetic nanoparticles are especially attractive because of their ability to dissipate thermal energy in an alternating magnetic field. Furthermore, plasmonic nanoparticles can be effectively used in non- or minimally invasive therapy of tumors exploiting their plasmonic photothermal effect. Here, hybrid plasmonicmagnetic Ag/Fe2O3 nanoparticles are made by flame aerosol technology. These nanoparticles can be in situ encapsulated with an amorphous nanothin SiO2 film to facilitate their dispersion and block any toxicity from Ag/Fe2O3. Detailed physicochemical characterization, including electron microscopy, electron dispersive X-ray spectroscopy, and X-ray diffraction, is performed. Furthermore, their magnetic properties are characterized in detail by monitoring their hysteresis, first-order-reversal-curves, and isothermal remanent magnetization. Finally, the effect of SiO2 and Agcontent on the specific absorption rate (SAR) of the hybrid Ag/Fe2O3 nanoparticles is investigated. The obtained understanding will help the rational design and engineering of multifunctional hybrid nanoprobes targeting specific biomedical applications.</description><subject>core-shell nanoparticles</subject><subject>magnetic fluid hyperthermia</subject><subject>specific absorption rate</subject><subject>theranostics</subject><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo1jM1OhDAUhbvQxHF04Rv0AUTbAi0syfw4JqNjMqNbcoEL1kAhbYny9mLU1Tk535dDyA1nd5wJfl92ERNJKr_OyIIlqQoiFcsLcuncB2N8VpIFcad3tB20dGPQNhNda-f0AF73hhYTPeqDCFY9eKzoSwuu640ug-M4oB3AgjXQGPS6pM9g-nmZa4uOakOz1uOMvTYNffq3thrbyl2R8xpah9d_uSSv281ptQv2h4fHVbYPHBfCByKVLI4lKlnHKsa0DlnEoqJIecJDzmQogFUYK6EiCWWNqYjEjydElSBXPFyS299f94nDWOSD1R3YKe9B52v9luW9bfJxzEOuEi7Dbxi7XjM</recordid><startdate>20131126</startdate><enddate>20131126</enddate><creator>Sotiriou, Georgios A.</creator><creator>Visbal-Onufrak, Michelle A.</creator><creator>Teleki, Alexandra</creator><creator>Juan, Eduardo J.</creator><creator>Hirt, Ann M.</creator><creator>Pratsinis, Sotiris E.</creator><creator>Rinaldi, Carlos</creator><scope>ADTPV</scope><scope>AOWAS</scope><scope>DF2</scope></search><sort><creationdate>20131126</creationdate><title>Thermal Energy Dissipation by SiO2-Coated Plasmonic-Superpararnagnetic Nanoparticles in Alternating Magnetic Fields</title><author>Sotiriou, Georgios A. ; Visbal-Onufrak, Michelle A. ; Teleki, Alexandra ; Juan, Eduardo J. ; Hirt, Ann M. ; Pratsinis, Sotiris E. ; Rinaldi, Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-s122t-2960556e76f575e9f30404bb9181310632a0de572746acfe924275e922d8e1713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>core-shell nanoparticles</topic><topic>magnetic fluid hyperthermia</topic><topic>specific absorption rate</topic><topic>theranostics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sotiriou, Georgios A.</creatorcontrib><creatorcontrib>Visbal-Onufrak, Michelle A.</creatorcontrib><creatorcontrib>Teleki, Alexandra</creatorcontrib><creatorcontrib>Juan, Eduardo J.</creatorcontrib><creatorcontrib>Hirt, Ann M.</creatorcontrib><creatorcontrib>Pratsinis, Sotiris E.</creatorcontrib><creatorcontrib>Rinaldi, Carlos</creatorcontrib><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Uppsala universitet</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sotiriou, Georgios A.</au><au>Visbal-Onufrak, Michelle A.</au><au>Teleki, Alexandra</au><au>Juan, Eduardo J.</au><au>Hirt, Ann M.</au><au>Pratsinis, Sotiris E.</au><au>Rinaldi, Carlos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal Energy Dissipation by SiO2-Coated Plasmonic-Superpararnagnetic Nanoparticles in Alternating Magnetic Fields</atitle><jtitle>Chemistry of materials</jtitle><date>2013-11-26</date><risdate>2013</risdate><volume>25</volume><issue>22</issue><spage>4603</spage><pages>4603-</pages><issn>0897-4756</issn><issn>1520-5002</issn><abstract>Multifunctional nanoparticles show great potential in the biomedical field and may help the diagnosis and therapy of diseases. Superparamagnetic nanoparticles are especially attractive because of their ability to dissipate thermal energy in an alternating magnetic field. Furthermore, plasmonic nanoparticles can be effectively used in non- or minimally invasive therapy of tumors exploiting their plasmonic photothermal effect. Here, hybrid plasmonicmagnetic Ag/Fe2O3 nanoparticles are made by flame aerosol technology. These nanoparticles can be in situ encapsulated with an amorphous nanothin SiO2 film to facilitate their dispersion and block any toxicity from Ag/Fe2O3. Detailed physicochemical characterization, including electron microscopy, electron dispersive X-ray spectroscopy, and X-ray diffraction, is performed. Furthermore, their magnetic properties are characterized in detail by monitoring their hysteresis, first-order-reversal-curves, and isothermal remanent magnetization. Finally, the effect of SiO2 and Agcontent on the specific absorption rate (SAR) of the hybrid Ag/Fe2O3 nanoparticles is investigated. The obtained understanding will help the rational design and engineering of multifunctional hybrid nanoprobes targeting specific biomedical applications.</abstract><doi>10.1021/cm402896x</doi></addata></record>
fulltext fulltext
identifier ISSN: 0897-4756
ispartof Chemistry of materials, 2013-11, Vol.25 (22), p.4603
issn 0897-4756
1520-5002
language eng
recordid cdi_swepub_primary_oai_DiVA_org_uu_317816
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects core-shell nanoparticles
magnetic fluid hyperthermia
specific absorption rate
theranostics
title Thermal Energy Dissipation by SiO2-Coated Plasmonic-Superpararnagnetic Nanoparticles in Alternating Magnetic Fields
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T13%3A48%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-swepub&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20Energy%20Dissipation%20by%20SiO2-Coated%20Plasmonic-Superpararnagnetic%20Nanoparticles%20in%20Alternating%20Magnetic%20Fields&rft.jtitle=Chemistry%20of%20materials&rft.au=Sotiriou,%20Georgios%20A.&rft.date=2013-11-26&rft.volume=25&rft.issue=22&rft.spage=4603&rft.pages=4603-&rft.issn=0897-4756&rft_id=info:doi/10.1021/cm402896x&rft_dat=%3Cswepub%3Eoai_DiVA_org_uu_317816%3C/swepub%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-s122t-2960556e76f575e9f30404bb9181310632a0de572746acfe924275e922d8e1713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true