Loading…
Thermal Energy Dissipation by SiO2-Coated Plasmonic-Superpararnagnetic Nanoparticles in Alternating Magnetic Fields
Multifunctional nanoparticles show great potential in the biomedical field and may help the diagnosis and therapy of diseases. Superparamagnetic nanoparticles are especially attractive because of their ability to dissipate thermal energy in an alternating magnetic field. Furthermore, plasmonic nanop...
Saved in:
Published in: | Chemistry of materials 2013-11, Vol.25 (22), p.4603 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 22 |
container_start_page | 4603 |
container_title | Chemistry of materials |
container_volume | 25 |
creator | Sotiriou, Georgios A. Visbal-Onufrak, Michelle A. Teleki, Alexandra Juan, Eduardo J. Hirt, Ann M. Pratsinis, Sotiris E. Rinaldi, Carlos |
description | Multifunctional nanoparticles show great potential in the biomedical field and may help the diagnosis and therapy of diseases. Superparamagnetic nanoparticles are especially attractive because of their ability to dissipate thermal energy in an alternating magnetic field. Furthermore, plasmonic nanoparticles can be effectively used in non- or minimally invasive therapy of tumors exploiting their plasmonic photothermal effect. Here, hybrid plasmonicmagnetic Ag/Fe2O3 nanoparticles are made by flame aerosol technology. These nanoparticles can be in situ encapsulated with an amorphous nanothin SiO2 film to facilitate their dispersion and block any toxicity from Ag/Fe2O3. Detailed physicochemical characterization, including electron microscopy, electron dispersive X-ray spectroscopy, and X-ray diffraction, is performed. Furthermore, their magnetic properties are characterized in detail by monitoring their hysteresis, first-order-reversal-curves, and isothermal remanent magnetization. Finally, the effect of SiO2 and Agcontent on the specific absorption rate (SAR) of the hybrid Ag/Fe2O3 nanoparticles is investigated. The obtained understanding will help the rational design and engineering of multifunctional hybrid nanoprobes targeting specific biomedical applications. |
doi_str_mv | 10.1021/cm402896x |
format | article |
fullrecord | <record><control><sourceid>swepub</sourceid><recordid>TN_cdi_swepub_primary_oai_DiVA_org_uu_317816</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_DiVA_org_uu_317816</sourcerecordid><originalsourceid>FETCH-LOGICAL-s122t-2960556e76f575e9f30404bb9181310632a0de572746acfe924275e922d8e1713</originalsourceid><addsrcrecordid>eNo1jM1OhDAUhbvQxHF04Rv0AUTbAi0syfw4JqNjMqNbcoEL1kAhbYny9mLU1Tk535dDyA1nd5wJfl92ERNJKr_OyIIlqQoiFcsLcuncB2N8VpIFcad3tB20dGPQNhNda-f0AF73hhYTPeqDCFY9eKzoSwuu640ug-M4oB3AgjXQGPS6pM9g-nmZa4uOakOz1uOMvTYNffq3thrbyl2R8xpah9d_uSSv281ptQv2h4fHVbYPHBfCByKVLI4lKlnHKsa0DlnEoqJIecJDzmQogFUYK6EiCWWNqYjEjydElSBXPFyS299f94nDWOSD1R3YKe9B52v9luW9bfJxzEOuEi7Dbxi7XjM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thermal Energy Dissipation by SiO2-Coated Plasmonic-Superpararnagnetic Nanoparticles in Alternating Magnetic Fields</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Sotiriou, Georgios A. ; Visbal-Onufrak, Michelle A. ; Teleki, Alexandra ; Juan, Eduardo J. ; Hirt, Ann M. ; Pratsinis, Sotiris E. ; Rinaldi, Carlos</creator><creatorcontrib>Sotiriou, Georgios A. ; Visbal-Onufrak, Michelle A. ; Teleki, Alexandra ; Juan, Eduardo J. ; Hirt, Ann M. ; Pratsinis, Sotiris E. ; Rinaldi, Carlos</creatorcontrib><description>Multifunctional nanoparticles show great potential in the biomedical field and may help the diagnosis and therapy of diseases. Superparamagnetic nanoparticles are especially attractive because of their ability to dissipate thermal energy in an alternating magnetic field. Furthermore, plasmonic nanoparticles can be effectively used in non- or minimally invasive therapy of tumors exploiting their plasmonic photothermal effect. Here, hybrid plasmonicmagnetic Ag/Fe2O3 nanoparticles are made by flame aerosol technology. These nanoparticles can be in situ encapsulated with an amorphous nanothin SiO2 film to facilitate their dispersion and block any toxicity from Ag/Fe2O3. Detailed physicochemical characterization, including electron microscopy, electron dispersive X-ray spectroscopy, and X-ray diffraction, is performed. Furthermore, their magnetic properties are characterized in detail by monitoring their hysteresis, first-order-reversal-curves, and isothermal remanent magnetization. Finally, the effect of SiO2 and Agcontent on the specific absorption rate (SAR) of the hybrid Ag/Fe2O3 nanoparticles is investigated. The obtained understanding will help the rational design and engineering of multifunctional hybrid nanoprobes targeting specific biomedical applications.</description><identifier>ISSN: 0897-4756</identifier><identifier>ISSN: 1520-5002</identifier><identifier>DOI: 10.1021/cm402896x</identifier><language>eng</language><subject>core-shell nanoparticles ; magnetic fluid hyperthermia ; specific absorption rate ; theranostics</subject><ispartof>Chemistry of materials, 2013-11, Vol.25 (22), p.4603</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-317816$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Sotiriou, Georgios A.</creatorcontrib><creatorcontrib>Visbal-Onufrak, Michelle A.</creatorcontrib><creatorcontrib>Teleki, Alexandra</creatorcontrib><creatorcontrib>Juan, Eduardo J.</creatorcontrib><creatorcontrib>Hirt, Ann M.</creatorcontrib><creatorcontrib>Pratsinis, Sotiris E.</creatorcontrib><creatorcontrib>Rinaldi, Carlos</creatorcontrib><title>Thermal Energy Dissipation by SiO2-Coated Plasmonic-Superpararnagnetic Nanoparticles in Alternating Magnetic Fields</title><title>Chemistry of materials</title><description>Multifunctional nanoparticles show great potential in the biomedical field and may help the diagnosis and therapy of diseases. Superparamagnetic nanoparticles are especially attractive because of their ability to dissipate thermal energy in an alternating magnetic field. Furthermore, plasmonic nanoparticles can be effectively used in non- or minimally invasive therapy of tumors exploiting their plasmonic photothermal effect. Here, hybrid plasmonicmagnetic Ag/Fe2O3 nanoparticles are made by flame aerosol technology. These nanoparticles can be in situ encapsulated with an amorphous nanothin SiO2 film to facilitate their dispersion and block any toxicity from Ag/Fe2O3. Detailed physicochemical characterization, including electron microscopy, electron dispersive X-ray spectroscopy, and X-ray diffraction, is performed. Furthermore, their magnetic properties are characterized in detail by monitoring their hysteresis, first-order-reversal-curves, and isothermal remanent magnetization. Finally, the effect of SiO2 and Agcontent on the specific absorption rate (SAR) of the hybrid Ag/Fe2O3 nanoparticles is investigated. The obtained understanding will help the rational design and engineering of multifunctional hybrid nanoprobes targeting specific biomedical applications.</description><subject>core-shell nanoparticles</subject><subject>magnetic fluid hyperthermia</subject><subject>specific absorption rate</subject><subject>theranostics</subject><issn>0897-4756</issn><issn>1520-5002</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNo1jM1OhDAUhbvQxHF04Rv0AUTbAi0syfw4JqNjMqNbcoEL1kAhbYny9mLU1Tk535dDyA1nd5wJfl92ERNJKr_OyIIlqQoiFcsLcuncB2N8VpIFcad3tB20dGPQNhNda-f0AF73hhYTPeqDCFY9eKzoSwuu640ug-M4oB3AgjXQGPS6pM9g-nmZa4uOakOz1uOMvTYNffq3thrbyl2R8xpah9d_uSSv281ptQv2h4fHVbYPHBfCByKVLI4lKlnHKsa0DlnEoqJIecJDzmQogFUYK6EiCWWNqYjEjydElSBXPFyS299f94nDWOSD1R3YKe9B52v9luW9bfJxzEOuEi7Dbxi7XjM</recordid><startdate>20131126</startdate><enddate>20131126</enddate><creator>Sotiriou, Georgios A.</creator><creator>Visbal-Onufrak, Michelle A.</creator><creator>Teleki, Alexandra</creator><creator>Juan, Eduardo J.</creator><creator>Hirt, Ann M.</creator><creator>Pratsinis, Sotiris E.</creator><creator>Rinaldi, Carlos</creator><scope>ADTPV</scope><scope>AOWAS</scope><scope>DF2</scope></search><sort><creationdate>20131126</creationdate><title>Thermal Energy Dissipation by SiO2-Coated Plasmonic-Superpararnagnetic Nanoparticles in Alternating Magnetic Fields</title><author>Sotiriou, Georgios A. ; Visbal-Onufrak, Michelle A. ; Teleki, Alexandra ; Juan, Eduardo J. ; Hirt, Ann M. ; Pratsinis, Sotiris E. ; Rinaldi, Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-s122t-2960556e76f575e9f30404bb9181310632a0de572746acfe924275e922d8e1713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>core-shell nanoparticles</topic><topic>magnetic fluid hyperthermia</topic><topic>specific absorption rate</topic><topic>theranostics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sotiriou, Georgios A.</creatorcontrib><creatorcontrib>Visbal-Onufrak, Michelle A.</creatorcontrib><creatorcontrib>Teleki, Alexandra</creatorcontrib><creatorcontrib>Juan, Eduardo J.</creatorcontrib><creatorcontrib>Hirt, Ann M.</creatorcontrib><creatorcontrib>Pratsinis, Sotiris E.</creatorcontrib><creatorcontrib>Rinaldi, Carlos</creatorcontrib><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Uppsala universitet</collection><jtitle>Chemistry of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sotiriou, Georgios A.</au><au>Visbal-Onufrak, Michelle A.</au><au>Teleki, Alexandra</au><au>Juan, Eduardo J.</au><au>Hirt, Ann M.</au><au>Pratsinis, Sotiris E.</au><au>Rinaldi, Carlos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal Energy Dissipation by SiO2-Coated Plasmonic-Superpararnagnetic Nanoparticles in Alternating Magnetic Fields</atitle><jtitle>Chemistry of materials</jtitle><date>2013-11-26</date><risdate>2013</risdate><volume>25</volume><issue>22</issue><spage>4603</spage><pages>4603-</pages><issn>0897-4756</issn><issn>1520-5002</issn><abstract>Multifunctional nanoparticles show great potential in the biomedical field and may help the diagnosis and therapy of diseases. Superparamagnetic nanoparticles are especially attractive because of their ability to dissipate thermal energy in an alternating magnetic field. Furthermore, plasmonic nanoparticles can be effectively used in non- or minimally invasive therapy of tumors exploiting their plasmonic photothermal effect. Here, hybrid plasmonicmagnetic Ag/Fe2O3 nanoparticles are made by flame aerosol technology. These nanoparticles can be in situ encapsulated with an amorphous nanothin SiO2 film to facilitate their dispersion and block any toxicity from Ag/Fe2O3. Detailed physicochemical characterization, including electron microscopy, electron dispersive X-ray spectroscopy, and X-ray diffraction, is performed. Furthermore, their magnetic properties are characterized in detail by monitoring their hysteresis, first-order-reversal-curves, and isothermal remanent magnetization. Finally, the effect of SiO2 and Agcontent on the specific absorption rate (SAR) of the hybrid Ag/Fe2O3 nanoparticles is investigated. The obtained understanding will help the rational design and engineering of multifunctional hybrid nanoprobes targeting specific biomedical applications.</abstract><doi>10.1021/cm402896x</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0897-4756 |
ispartof | Chemistry of materials, 2013-11, Vol.25 (22), p.4603 |
issn | 0897-4756 1520-5002 |
language | eng |
recordid | cdi_swepub_primary_oai_DiVA_org_uu_317816 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | core-shell nanoparticles magnetic fluid hyperthermia specific absorption rate theranostics |
title | Thermal Energy Dissipation by SiO2-Coated Plasmonic-Superpararnagnetic Nanoparticles in Alternating Magnetic Fields |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T13%3A48%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-swepub&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20Energy%20Dissipation%20by%20SiO2-Coated%20Plasmonic-Superpararnagnetic%20Nanoparticles%20in%20Alternating%20Magnetic%20Fields&rft.jtitle=Chemistry%20of%20materials&rft.au=Sotiriou,%20Georgios%20A.&rft.date=2013-11-26&rft.volume=25&rft.issue=22&rft.spage=4603&rft.pages=4603-&rft.issn=0897-4756&rft_id=info:doi/10.1021/cm402896x&rft_dat=%3Cswepub%3Eoai_DiVA_org_uu_317816%3C/swepub%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-s122t-2960556e76f575e9f30404bb9181310632a0de572746acfe924275e922d8e1713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |